Spaces:
Running
Running
pragnakalp
commited on
Commit
•
c44a830
1
Parent(s):
0d9cdc0
Update app.py
Browse files
app.py
CHANGED
@@ -13,11 +13,11 @@ from transformers import AutoTokenizer, AutoModelWithLMHead
|
|
13 |
|
14 |
## connection with HF datasets
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
-
DATASET_NAME = "
|
17 |
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
|
18 |
DATA_FILENAME = "emotion_detection_logs.csv"
|
19 |
DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME)
|
20 |
-
DATASET_REPO_ID = "pragnakalp/
|
21 |
print("is none?", HF_TOKEN is None)
|
22 |
try:
|
23 |
hf_hub_download(
|
@@ -148,7 +148,7 @@ def save_data_and_sendmail(article,results_dict,sen_list,results):
|
|
148 |
"""
|
149 |
UI design for demo using gradio app
|
150 |
"""
|
151 |
-
inputs = gr.Textbox(value=SENTENCES_VALUE,lines=
|
152 |
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"])]
|
153 |
|
154 |
demo = gr.Interface(
|
@@ -157,6 +157,11 @@ demo = gr.Interface(
|
|
157 |
outputs,
|
158 |
title="Emotion Detection",
|
159 |
description="Feel free to give your feedback",
|
160 |
-
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #FB3D5;}"
|
|
|
|
|
|
|
|
|
|
|
161 |
)
|
162 |
demo.launch()
|
|
|
13 |
|
14 |
## connection with HF datasets
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
+
DATASET_NAME = "emotion_detection_dataset"
|
17 |
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
|
18 |
DATA_FILENAME = "emotion_detection_logs.csv"
|
19 |
DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME)
|
20 |
+
DATASET_REPO_ID = "pragnakalp/emotion_detection_dataset"
|
21 |
print("is none?", HF_TOKEN is None)
|
22 |
try:
|
23 |
hf_hub_download(
|
|
|
148 |
"""
|
149 |
UI design for demo using gradio app
|
150 |
"""
|
151 |
+
inputs = gr.Textbox(value=SENTENCES_VALUE,lines=3, label="Sentences",elem_id="inp_div")
|
152 |
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"])]
|
153 |
|
154 |
demo = gr.Interface(
|
|
|
157 |
outputs,
|
158 |
title="Emotion Detection",
|
159 |
description="Feel free to give your feedback",
|
160 |
+
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #FB3D5;}",
|
161 |
+
article="""Provide us your [feedback](https://www.pragnakalp.com/contact/) on this demo and feel free to contact us at
|
162 |
+
[letstalk@pragnakalp.com]("mailto:letstalk@pragnakalp.com") if you want to have your own Emotion Detection system.
|
163 |
+
We will be happy to serve you for your Emotion Detection requirement. And don't forget to check out more interesting
|
164 |
+
[NLP services](https://www.pragnakalp.com/services/natural-language-processing-services/) we are offering.
|
165 |
+
<p style='text-align: center;'>Developed by :[ Pragnakalp Techlabs](https://www.pragnakalp.com)</p>"""
|
166 |
)
|
167 |
demo.launch()
|