import gradio as gr from datetime import date import json import csv import datetime import smtplib from email.mime.text import MIMEText import requests from transformers import AutoTokenizer, AutoModelWithLMHead import gc import os import json import numpy as np from tqdm import trange import torch import torch.nn.functional as F from bert_ner_model_loader import Ner import pandas as pd cwd = os.getcwd() bert_ner_model = os.path.join(cwd) Entities_Found =[] Entity_Types = [] k = 0 def generate_emotion(article): text = "Input sentence: " text += article model_ner = Ner(bert_ner_model) output = model_ner.predict(text) print(output) k = 0 for i in output: for j in i: if k == 0: Entities_Found.append(j) k += 1 else: Entity_Types.append(j) k = 0 result = {'Entities Found':Entities_Found, 'Entity Types':Entity_Types} return pd.DataFrame(result) inputs=gr.Textbox(lines=10, label="Sentences",elem_id="inp_div") outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Entities Found","Entity Types"])] demo = gr.Interface( generate_emotion, inputs, outputs, title="Entity Recognition For Input Text", description="Feel free to give your feedback", css=".gradio-container {background-color: lightgray} #inp_div {background-color: [#7](https://www1.example.com/issues/7)FB3D5;" ) demo.launch()