Spaces:
Runtime error
Runtime error
import zipfile | |
import hashlib | |
from utils.model import model_downloader, get_model | |
import requests | |
import json | |
import torch | |
import os | |
from inference import Inference | |
import gradio as gr | |
from constants import VOICE_METHODS, BARK_VOICES, EDGE_VOICES, zips_folder, unzips_folder | |
from tts.conversion import tts_infer, ELEVENLABS_VOICES_RAW, ELEVENLABS_VOICES_NAMES | |
api_url = "https://rvc-models-api.onrender.com/uploadfile/" | |
if not os.path.exists(zips_folder): | |
os.mkdir(zips_folder) | |
if not os.path.exists(unzips_folder): | |
os.mkdir(unzips_folder) | |
def get_info(path): | |
path = os.path.join(unzips_folder, path) | |
try: | |
a = torch.load(path, map_location="cpu") | |
return a | |
except Exception as e: | |
print("*****************eeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrr*****") | |
print(e) | |
return { | |
} | |
def calculate_md5(file_path): | |
hash_md5 = hashlib.md5() | |
with open(file_path, "rb") as f: | |
for chunk in iter(lambda: f.read(4096), b""): | |
hash_md5.update(chunk) | |
return hash_md5.hexdigest() | |
def compress(modelname, files): | |
file_path = os.path.join(zips_folder, f"{modelname}.zip") | |
# Select the compression mode ZIP_DEFLATED for compression | |
# or zipfile.ZIP_STORED to just store the file | |
compression = zipfile.ZIP_DEFLATED | |
# Comprueba si el archivo ZIP ya existe | |
if not os.path.exists(file_path): | |
# Si no existe, crea el archivo ZIP | |
with zipfile.ZipFile(file_path, mode="w") as zf: | |
try: | |
for file in files: | |
if file: | |
# Agrega el archivo al archivo ZIP | |
zf.write(unzips_folder if ".index" in file else os.path.join(unzips_folder, file), compress_type=compression) | |
except FileNotFoundError as fnf: | |
print("An error occurred", fnf) | |
else: | |
# Si el archivo ZIP ya existe, agrega los archivos a un archivo ZIP existente | |
with zipfile.ZipFile(file_path, mode="a") as zf: | |
try: | |
for file in files: | |
if file: | |
# Agrega el archivo al archivo ZIP | |
zf.write(unzips_folder if ".index" in file else os.path.join(unzips_folder, file), compress_type=compression) | |
except FileNotFoundError as fnf: | |
print("An error occurred", fnf) | |
return file_path | |
def infer(model, f0_method, audio_file): | |
print("****", audio_file) | |
inference = Inference( | |
model_name=model, | |
f0_method=f0_method, | |
source_audio_path=audio_file, | |
output_file_name=os.path.join("./audio-outputs", os.path.basename(audio_file)) | |
) | |
output = inference.run() | |
if 'success' in output and output['success']: | |
return output, output['file'] | |
else: | |
return | |
def post_model(name, model_url, version, creator): | |
modelname = model_downloader(model_url, zips_folder, unzips_folder) | |
model_files = get_model(unzips_folder, modelname) | |
if not model_files: | |
return "No se encontrado un modelo valido, verifica el contenido del enlace e intentalo más tarde." | |
if not model_files.get('pth'): | |
return "No se encontrado un modelo valido, verifica el contenido del enlace e intentalo más tarde." | |
md5_hash = calculate_md5(os.path.join(unzips_folder,model_files['pth'])) | |
zipfile = compress(modelname, list(model_files.values())) | |
a = get_info(model_files.get('pth')) | |
file_to_upload = open(zipfile, "rb") | |
info = a.get("info", "None"), | |
sr = a.get("sr", "None"), | |
f0 = a.get("f0", "None"), | |
data = { | |
"name": name, | |
"version": version, | |
"creator": creator, | |
"hash": md5_hash, | |
"info": info, | |
"sr": sr, | |
"f0": f0 | |
} | |
print("Subiendo archivo...") | |
# Realizar la solicitud POST | |
response = requests.post(api_url, files={"file": file_to_upload}, data=data) | |
result = response.json() | |
# Comprobar la respuesta | |
if response.status_code == 200: | |
result = response.json() | |
return json.dumps(result, indent=4) | |
else: | |
print("Error al cargar el archivo:", response.status_code) | |
return result | |
def search_model(name): | |
web_service_url = "https://script.google.com/macros/s/AKfycbyRaNxtcuN8CxUrcA_nHW6Sq9G2QJor8Z2-BJUGnQ2F_CB8klF4kQL--U2r2MhLFZ5J/exec" | |
response = requests.post(web_service_url, json={ | |
'type': 'search_by_filename', | |
'name': name | |
}) | |
result = [] | |
response.raise_for_status() # Lanza una excepción en caso de error | |
json_response = response.json() | |
cont = 0 | |
result.append("""| Nombre del modelo | Url | Epoch | Sample Rate | | |
| ---------------- | -------------- |:------:|:-----------:| | |
""") | |
yield "<br />".join(result) | |
if json_response.get('ok', None): | |
for model in json_response['ocurrences']: | |
if cont < 20: | |
model_name = str(model.get('name', 'N/A')).strip() | |
model_url = model.get('url', 'N/A') | |
epoch = model.get('epoch', 'N/A') | |
sr = model.get('sr', 'N/A') | |
line = f"""|{model_name}|<a>{model_url}</a>|{epoch}|{sr}| | |
""" | |
result.append(line) | |
yield "".join(result) | |
cont += 1 | |
def update_tts_methods_voice(select_value): | |
if select_value == "Edge-tts": | |
return gr.Dropdown.update(choices=EDGE_VOICES, visible=True, value="es-CO-GonzaloNeural-Male"), gr.Markdown.update(visible=False), gr.Textbox.update(visible=False),gr.Radio.update(visible=False) | |
elif select_value == "Bark-tts": | |
return gr.Dropdown.update(choices=BARK_VOICES, visible=True), gr.Markdown.update(visible=False), gr.Textbox.update(visible=False),gr.Radio.update(visible=False) | |
elif select_value == 'ElevenLabs': | |
return gr.Dropdown.update(choices=ELEVENLABS_VOICES_NAMES, visible=True, value="Bella"), gr.Markdown.update(visible=True), gr.Textbox.update(visible=True), gr.Radio.update(visible=False) | |
elif select_value == 'CoquiTTS': | |
return gr.Dropdown.update(visible=False), gr.Markdown.update(visible=False), gr.Textbox.update(visible=False), gr.Radio.update(visible=True) | |