ebook-gen / app.py
pragneshbarik's picture
changed Rupees to dollar
e87951e
raw
history blame
15.1 kB
import streamlit as st
from chat_client import chat
import time
import pandas as pd
import os
from dotenv import load_dotenv
from search_client import SearchClient
import math
import numpy as np
from sentence_transformers import CrossEncoder
load_dotenv()
GOOGLE_SEARCH_ENGINE_ID = os.getenv("GOOGLE_SEARCH_ENGINE_ID")
GOOGLE_SEARCH_API_KEY = os.getenv("GOOGLE_SEARCH_API_KEY")
BING_SEARCH_API_KEY = os.getenv("BING_SEARCH_API_KEY")
COST_PER_1000_TOKENS_INR = 0.139
CHAT_BOTS = {
"Mixtral 8x7B v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"Mistral 7B v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
}
INITIAL_PROMPT_ENGINEERING = {
"SYSTEM_INSTRUCTION": """ You are a knowledgeable author on medical conditions, with a deep expertise in Huntington's disease.
You provide extensive, clear information on complex medical topics, treatments, new research and developments.
You avoid giving personal medical advice or diagnoses but offers general advice and underscores the importance of consulting healthcare professionals.
Your goal is to inform, engage and enlighten users that enquire about Huntington's disease, offering factual data and real-life perspectives with anempathetic tone.
You use every search available including web search together with articles and information from
* Journal of Huntington's disease,
* Movement Disorders,
* Neurology,
* Journal of Neurology,
* Neurosurgery & Psychiatry,
* HDBuzz,
* PubMed,
* Huntington's disease Society of America (HDSA),
* Huntington Study Group (HSG),
* Nature Reviews Neurology
* ScienceDirect
The information you provide should be understandable to laypersons, well-organized, and include credible sources, citations, and an empathetic tone.
It should educate on the scientific aspects and personal challenges of living with Huntington's Disease.""",
"SYSTEM_RESPONSE": """Hello! I'm an assistant trained to provide detailed and accurate information on medical conditions, including Huntington's Disease.
I'm here to help answer your questions and provide resources to help you better understand this disease and its impact on individuals and their families.
If you have any questions about HD or related topics, feel free to ask!""",
"PRE_CONTEXT": """NOW YOU ARE SEARCHING THE WEB, AND HERE ARE THE CHUNKS RETRIEVED FROM THE WEB.""",
"POST_CONTEXT": """ """, # EMPTY
"PRE_PROMPT": """NOW ACCORDING TO THE CONTEXT RETRIEVED FROM THE GENERATE THE CONTENT FOR THE FOLLOWING SUBJECT""",
"POST_PROMPT": """
Do not repeat yourself
""",
}
googleSearchClient = SearchClient(
"google", api_key=GOOGLE_SEARCH_API_KEY, engine_id=GOOGLE_SEARCH_ENGINE_ID
)
bingSearchClient = SearchClient("bing", api_key=BING_SEARCH_API_KEY, engine_id=None)
st.set_page_config(
page_title="Mixtral Playground",
page_icon="📚",
)
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
def rerank(query, top_k, search_results):
chunks = []
for result in search_results:
text = result["text"]
# Chunk the text into segments of 512 words each
words = text.split()
chunk_size = 512
num_chunks = math.ceil(len(words) / chunk_size)
for i in range(num_chunks):
start = i * chunk_size
end = (i + 1) * chunk_size
chunk = " ".join(words[start:end])
chunks.append((result["link"], chunk))
# Create sentence combinations with the query
sentence_combinations = [[query, chunk[1]] for chunk in chunks]
# Compute similarity scores for these combinations
similarity_scores = reranker.predict(sentence_combinations)
# Sort scores in decreasing order
sim_scores_argsort = reversed(np.argsort(similarity_scores))
# Rearrange search_results based on the reranked scores
reranked_results = []
for idx in sim_scores_argsort:
link = chunks[idx][0]
for result in search_results:
if result["link"] == link:
reranked_results.append(result)
break
return reranked_results[:top_k]
def gen_augmented_prompt_via_websearch(
prompt,
vendor,
n_crawl,
top_k,
pre_context,
post_context,
pre_prompt="",
post_prompt="",
pass_prev=False,
):
"""returns a prompt with the context of the query and the top k web search results.
Args:
query (_type_): _description_
top_k (_type_): _description_
preprompt (str, optional): _description_. Defaults to "".
postprompt (str, optional): _description_. Defaults to "".
"""
search_results = []
if vendor == "Google":
search_results = googleSearchClient.search(prompt, n_crawl)
elif vendor == "Bing":
search_results = bingSearchClient.search(prompt, n_crawl)
reranked_results = rerank(prompt, top_k, search_results)
links = []
context = ""
for res in reranked_results:
context += res["text"] + "\n\n"
link = res["link"]
links.append(link)
print(reranked_results)
prev_input = st.session_state.history[-1][1] if pass_prev else ""
generated_prompt = f"""
{pre_context}
{context}
{post_context}
{pre_prompt}
{prompt} \n\n
{post_prompt}
{prev_input}
"""
return generated_prompt, links
def init_state():
if "messages" not in st.session_state:
st.session_state.messages = []
if "tokens_used" not in st.session_state:
st.session_state.tokens_used = 0
if "tps" not in st.session_state:
st.session_state.tps = 0
if "temp" not in st.session_state:
st.session_state.temp = 0.8
if "history" not in st.session_state:
st.session_state.history = [
[
INITIAL_PROMPT_ENGINEERING["SYSTEM_INSTRUCTION"],
INITIAL_PROMPT_ENGINEERING["SYSTEM_RESPONSE"],
]
]
if "n_crawl" not in st.session_state:
st.session_state.n_crawl = 5
if "repetion_penalty" not in st.session_state:
st.session_state.repetion_penalty = 1
if "rag_enabled" not in st.session_state:
st.session_state.rag_enabled = True
if "chat_bot" not in st.session_state:
st.session_state.chat_bot = "Mixtral 8x7B v0.1"
if "search_vendor" not in st.session_state:
st.session_state.search_vendor = "Bing"
if "system_instruction" not in st.session_state:
st.session_state.system_instruction = INITIAL_PROMPT_ENGINEERING[
"SYSTEM_INSTRUCTION"
]
if "system_response" not in st.session_state:
st.session_state.system_instruction = INITIAL_PROMPT_ENGINEERING[
"SYSTEM_RESPONSE"
]
if "pre_context" not in st.session_state:
st.session_state.pre_context = INITIAL_PROMPT_ENGINEERING["PRE_CONTEXT"]
if "post_context" not in st.session_state:
st.session_state.post_context = INITIAL_PROMPT_ENGINEERING["POST_CONTEXT"]
if "pre_prompt" not in st.session_state:
st.session_state.pre_prompt = INITIAL_PROMPT_ENGINEERING["PRE_PROMPT"]
if "post_prompt" not in st.session_state:
st.session_state.post_prompt = INITIAL_PROMPT_ENGINEERING["POST_PROMPT"]
if "pass_prev" not in st.session_state:
st.session_state.pass_prev = False
def sidebar():
def retrieval_settings():
st.markdown("# Web Retrieval")
st.session_state.rag_enabled = st.toggle("Activate Web Retrieval", value=True)
st.session_state.search_vendor = st.radio(
"Select Search Vendor",
["Bing", "Google"],
disabled=not st.session_state.rag_enabled,
)
st.session_state.n_crawl = st.slider(
label="Links to Crawl",
key=1,
min_value=1,
max_value=10,
value=4,
disabled=not st.session_state.rag_enabled,
)
st.session_state.top_k = st.slider(
label="Rerank Factor",
key=2,
min_value=1,
max_value=20,
value=4,
disabled=not st.session_state.rag_enabled,
)
st.markdown("---")
def model_analytics():
st.markdown("# Model Analytics")
st.write("Total tokens used :", st.session_state["tokens_used"])
st.write("Speed :", st.session_state["tps"], " tokens/sec")
st.write(
"Total cost incurred :",
round(
COST_PER_1000_TOKENS_INR * 80 * st.session_state["tokens_used"] / 1000,
3,
),
"INR",
)
st.markdown("---")
def model_settings():
st.markdown("# Model Settings")
st.session_state.chat_bot = st.sidebar.radio(
"Select one:", [key for key, _ in CHAT_BOTS.items()]
)
st.session_state.temp = st.slider(
label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.9
)
st.session_state.max_tokens = st.slider(
label="New tokens to generate",
min_value=64,
max_value=2048,
step=32,
value=512,
)
st.session_state.repetion_penalty = st.slider(
label="Repetion Penalty", min_value=0.0, max_value=1.0, step=0.1, value=1.0
)
with st.sidebar:
retrieval_settings()
model_analytics()
model_settings()
st.markdown(
"""
> **Created by [Pragnesh Barik](https://barik.super.site) 🔗**
"""
)
def prompt_engineering_dashboard():
def engineer_prompt():
st.session_state.history[0] = [
st.session_state.system_instruction,
st.session_state.system_response,
]
with st.expander("Prompt Engineering Dashboard"):
st.info(
"**The input to the model follows this below template**",
)
st.code(
"""
[SYSTEM INSTRUCTION]
[SYSTEM RESPONSE]
[... LIST OF PREV INPUTS]
[PRE CONTEXT]
[CONTEXT RETRIEVED FROM THE WEB]
[POST CONTEXT]
[PRE PROMPT]
[PROMPT]
[POST PROMPT]
[PREV GENERATED INPUT] # Only if Pass previous prompt set True
"""
)
st.session_state.system_instruction = st.text_area(
label="SYSTEM INSTRUCTION",
value=INITIAL_PROMPT_ENGINEERING["SYSTEM_INSTRUCTION"],
)
st.session_state.system_response = st.text_area(
"SYSTEM RESPONSE", value=INITIAL_PROMPT_ENGINEERING["SYSTEM_RESPONSE"]
)
col1, col2 = st.columns(2)
with col1:
st.text_input(
"PRE CONTEXT",
value=INITIAL_PROMPT_ENGINEERING["PRE_CONTEXT"],
disabled=not st.session_state.rag_enabled,
)
st.text_input("PRE PROMPT", value=INITIAL_PROMPT_ENGINEERING["PRE_PROMPT"])
st.button("Engineer Prompts", on_click=engineer_prompt)
with col2:
st.text_input(
"POST CONTEXT",
value=INITIAL_PROMPT_ENGINEERING["POST_CONTEXT"],
disabled=not st.session_state.rag_enabled,
)
st.text_input(
"POST PROMPT", value=INITIAL_PROMPT_ENGINEERING["POST_PROMPT"]
)
pass_prev = st.toggle("Pass previous prompt")
def header():
st.write("# Mixtral Playground")
data = {
"Attribute": ["LLM", "Text Vectorizer", "Vector Database", "CPU", "System RAM"],
"Information": [
"Mixtral-8x7B-Instruct-v0.1",
"all-distilroberta-v1",
"Hosted Pinecone",
"2 vCPU",
"16 GB",
],
}
df = pd.DataFrame(data)
st.table(df)
prompt_engineering_dashboard()
def chat_box():
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def generate_chat_stream(prompt):
links = []
if st.session_state.rag_enabled:
with st.spinner("Fetching relevent documents from Web...."):
prompt, links = gen_augmented_prompt_via_websearch(
prompt=prompt,
pre_context=st.session_state.pre_context,
post_context=st.session_state.post_context,
pre_prompt=st.session_state.pre_prompt,
post_prompt=st.session_state.post_prompt,
vendor=st.session_state.search_vendor,
top_k=st.session_state.top_k,
n_crawl=st.session_state.n_crawl,
)
with st.spinner("Generating response..."):
chat_stream = chat(
prompt,
st.session_state.history,
chat_client=CHAT_BOTS[st.session_state.chat_bot],
temperature=st.session_state.temp,
max_new_tokens=st.session_state.max_tokens,
)
return chat_stream, links
def stream_handler(chat_stream, placeholder):
start_time = time.time()
full_response = ""
for chunk in chat_stream:
if chunk.token.text != "</s>":
full_response += chunk.token.text
placeholder.markdown(full_response + "▌")
placeholder.markdown(full_response)
end_time = time.time()
elapsed_time = end_time - start_time
total_tokens_processed = len(full_response.split())
tokens_per_second = total_tokens_processed // elapsed_time
len_response = (len(prompt.split()) + len(full_response.split())) * 1.25
col1, col2, col3 = st.columns(3)
with col1:
st.write(f"**{tokens_per_second} tokens/second**")
with col2:
st.write(f"**{int(len_response)} tokens generated**")
with col3:
st.write(
f"**$ {round(len_response * COST_PER_1000_TOKENS_INR * 82 / 1000, 5)} cost incurred**"
)
st.session_state["tps"] = tokens_per_second
st.session_state["tokens_used"] = len_response + st.session_state["tokens_used"]
return full_response
def show_source(links):
with st.expander("Show source"):
for i, link in enumerate(links):
st.info(f"{link}")
init_state()
sidebar()
header()
chat_box()
if prompt := st.chat_input("Generate Ebook"):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
chat_stream, links = generate_chat_stream(prompt)
with st.chat_message("assistant"):
placeholder = st.empty()
full_response = stream_handler(chat_stream, placeholder)
if st.session_state.rag_enabled:
show_source(links)
st.session_state.history.append([prompt, full_response])
st.session_state.messages.append({"role": "assistant", "content": full_response})