File size: 6,607 Bytes
d6241cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
Helper methods for the Presidio Streamlit app
"""
from typing import List, Optional

import spacy
import streamlit as st
from presidio_analyzer import AnalyzerEngine, RecognizerResult, RecognizerRegistry
from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig

from flair_recognizer import FlairRecognizer
from openai_fake_data_generator import (
    set_openai_key,
    call_completion_model,
    create_prompt,
)
from transformers_rec import (
    STANFORD_COFIGURATION,
    TransformersRecognizer,
    BERT_DEID_CONFIGURATION,
)


@st.cache_resource
def analyzer_engine(model_path: str):
    """Return AnalyzerEngine.

    :param model_path: Which model to use for NER:
        "StanfordAIMI/stanford-deidentifier-base",
        "obi/deid_roberta_i2b2",
        "en_core_web_lg"
    """

    registry = RecognizerRegistry()
    registry.load_predefined_recognizers()

    # Set up NLP Engine according to the model of choice
    if model_path == "en_core_web_lg":
        if not spacy.util.is_package("en_core_web_lg"):
            spacy.cli.download("en_core_web_lg")
        nlp_configuration = {
            "nlp_engine_name": "spacy",
            "models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
        }
    elif model_path == "flair/ner-english-large":
        flair_recognizer = FlairRecognizer()
        nlp_configuration = {
            "nlp_engine_name": "spacy",
            "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
        }
        registry.add_recognizer(flair_recognizer)
        registry.remove_recognizer("SpacyRecognizer")
    else:
        if not spacy.util.is_package("en_core_web_sm"):
            spacy.cli.download("en_core_web_sm")
        # Using a small spaCy model + a HF NER model
        transformers_recognizer = TransformersRecognizer(model_path=model_path)
        registry.remove_recognizer("SpacyRecognizer")
        if model_path == "StanfordAIMI/stanford-deidentifier-base":
            transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
        elif model_path == "obi/deid_roberta_i2b2":
            transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)

        # Use small spaCy model, no need for both spacy and HF models
        # The transformers model is used here as a recognizer, not as an NlpEngine
        nlp_configuration = {
            "nlp_engine_name": "spacy",
            "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
        }

        registry.add_recognizer(transformers_recognizer)

    nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()

    analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
    return analyzer


@st.cache_resource
def anonymizer_engine():
    """Return AnonymizerEngine."""
    return AnonymizerEngine()


@st.cache_data
def get_supported_entities(st_model: str):
    """Return supported entities from the Analyzer Engine."""
    return analyzer_engine(st_model).get_supported_entities()


@st.cache_data
def analyze(st_model: str, **kwargs):
    """Analyze input using Analyzer engine and input arguments (kwargs)."""
    if "entities" not in kwargs or "All" in kwargs["entities"]:
        kwargs["entities"] = None
    return analyzer_engine(st_model).analyze(**kwargs)


def anonymize(
    text: str,
    operator: str,
    analyze_results: List[RecognizerResult],
    mask_char: Optional[str] = None,
    number_of_chars: Optional[str] = None,
    encrypt_key: Optional[str] = None,
):
    """Anonymize identified input using Presidio Anonymizer.

    :param text: Full text
    :param operator: Operator name
    :param mask_char: Mask char (for mask operator)
    :param number_of_chars: Number of characters to mask (for mask operator)
    :param encrypt_key: Encryption key (for encrypt operator)
    :param analyze_results: list of results from presidio analyzer engine
    """

    if operator == "mask":
        operator_config = {
            "type": "mask",
            "masking_char": mask_char,
            "chars_to_mask": number_of_chars,
            "from_end": False,
        }

    # Define operator config
    elif operator == "encrypt":
        operator_config = {"key": encrypt_key}
    elif operator == "highlight":
        operator_config = {"lambda": lambda x: x}
    else:
        operator_config = None

    # Change operator if needed as intermediate step
    if operator == "highlight":
        operator = "custom"
    elif operator == "synthesize":
        operator = "replace"
    else:
        operator = operator

    res = anonymizer_engine().anonymize(
        text,
        analyze_results,
        operators={"DEFAULT": OperatorConfig(operator, operator_config)},
    )
    return res


def annotate(text: str, analyze_results: List[RecognizerResult]):
    """Highlight the identified PII entities on the original text

    :param text: Full text
    :param analyze_results: list of results from presidio analyzer engine
    """
    tokens = []

    # Use the anonymizer to resolve overlaps
    results = anonymize(
        text=text,
        operator="highlight",
        analyze_results=analyze_results,
    )

    # sort by start index
    results = sorted(results.items, key=lambda x: x.start)
    for i, res in enumerate(results):
        if i == 0:
            tokens.append(text[: res.start])

        # append entity text and entity type
        tokens.append((text[res.start : res.end], res.entity_type))

        # if another entity coming i.e. we're not at the last results element, add text up to next entity
        if i != len(results) - 1:
            tokens.append(text[res.end : results[i + 1].start])
        # if no more entities coming, add all remaining text
        else:
            tokens.append(text[res.end :])
    return tokens


def create_fake_data(
    text: str,
    analyze_results: List[RecognizerResult],
    openai_key: str,
    openai_model_name: str,
):
    """Creates a synthetic version of the text using OpenAI APIs"""
    if not openai_key:
        return "Please provide your OpenAI key"
    results = anonymize(text=text, operator="replace", analyze_results=analyze_results)
    set_openai_key(openai_key)
    prompt = create_prompt(results.text)
    fake = call_openai_api(prompt, openai_model_name)
    return fake


@st.cache_data
def call_openai_api(prompt: str, openai_model_name: str) -> str:
    fake_data = call_completion_model(prompt, model=openai_model_name)
    return fake_data