Spaces:
Sleeping
Sleeping
import logging | |
from typing import Optional, List, Tuple, Set | |
from presidio_analyzer import ( | |
RecognizerResult, | |
EntityRecognizer, | |
AnalysisExplanation, | |
) | |
from presidio_analyzer.nlp_engine import NlpArtifacts | |
from flair.data import Sentence | |
from flair.models import SequenceTagger | |
logger = logging.getLogger("presidio-analyzer") | |
class FlairRecognizer(EntityRecognizer): | |
""" | |
Wrapper for a flair model, if needed to be used within Presidio Analyzer. | |
:example: | |
>from presidio_analyzer import AnalyzerEngine, RecognizerRegistry | |
>flair_recognizer = FlairRecognizer() | |
>registry = RecognizerRegistry() | |
>registry.add_recognizer(flair_recognizer) | |
>analyzer = AnalyzerEngine(registry=registry) | |
>results = analyzer.analyze( | |
> "My name is Christopher and I live in Irbid.", | |
> language="en", | |
> return_decision_process=True, | |
>) | |
>for result in results: | |
> print(result) | |
> print(result.analysis_explanation) | |
""" | |
ENTITIES = [ | |
"LOCATION", | |
"PERSON", | |
"ORGANIZATION", | |
# "MISCELLANEOUS" # - There are no direct correlation with Presidio entities. | |
] | |
DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition" | |
CHECK_LABEL_GROUPS = [ | |
({"LOCATION"}, {"LOC", "LOCATION"}), | |
({"PERSON"}, {"PER", "PERSON"}), | |
({"ORGANIZATION"}, {"ORG"}), | |
# ({"MISCELLANEOUS"}, {"MISC"}), # Probably not PII | |
] | |
MODEL_LANGUAGES = { | |
"en": "flair/ner-english-large" | |
} | |
PRESIDIO_EQUIVALENCES = { | |
"PER": "PERSON", | |
"LOC": "LOCATION", | |
"ORG": "ORGANIZATION", | |
# 'MISC': 'MISCELLANEOUS' # - Probably not PII | |
} | |
def __init__( | |
self, | |
supported_language: str = "en", | |
supported_entities: Optional[List[str]] = None, | |
check_label_groups: Optional[Tuple[Set, Set]] = None, | |
model: SequenceTagger = None, | |
): | |
self.check_label_groups = ( | |
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS | |
) | |
supported_entities = supported_entities if supported_entities else self.ENTITIES | |
self.model = ( | |
model | |
if model | |
else SequenceTagger.load(self.MODEL_LANGUAGES.get(supported_language)) | |
) | |
super().__init__( | |
supported_entities=supported_entities, | |
supported_language=supported_language, | |
name="Flair Analytics", | |
) | |
def load(self) -> None: | |
"""Load the model, not used. Model is loaded during initialization.""" | |
pass | |
def get_supported_entities(self) -> List[str]: | |
""" | |
Return supported entities by this model. | |
:return: List of the supported entities. | |
""" | |
return self.supported_entities | |
# Class to use Flair with Presidio as an external recognizer. | |
def analyze( | |
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None | |
) -> List[RecognizerResult]: | |
""" | |
Analyze text using Text Analytics. | |
:param text: The text for analysis. | |
:param entities: Not working properly for this recognizer. | |
:param nlp_artifacts: Not used by this recognizer. | |
:param language: Text language. Supported languages in MODEL_LANGUAGES | |
:return: The list of Presidio RecognizerResult constructed from the recognized | |
Flair detections. | |
""" | |
results = [] | |
sentences = Sentence(text) | |
self.model.predict(sentences) | |
# If there are no specific list of entities, we will look for all of it. | |
if not entities: | |
entities = self.supported_entities | |
for entity in entities: | |
if entity not in self.supported_entities: | |
continue | |
for ent in sentences.get_spans("ner"): | |
if not self.__check_label( | |
entity, ent.labels[0].value, self.check_label_groups | |
): | |
continue | |
textual_explanation = self.DEFAULT_EXPLANATION.format( | |
ent.labels[0].value | |
) | |
explanation = self.build_flair_explanation( | |
round(ent.score, 2), textual_explanation | |
) | |
flair_result = self._convert_to_recognizer_result(ent, explanation) | |
results.append(flair_result) | |
return results | |
def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult: | |
entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag) | |
flair_score = round(entity.score, 2) | |
flair_results = RecognizerResult( | |
entity_type=entity_type, | |
start=entity.start_position, | |
end=entity.end_position, | |
score=flair_score, | |
analysis_explanation=explanation, | |
) | |
return flair_results | |
def build_flair_explanation( | |
self, original_score: float, explanation: str | |
) -> AnalysisExplanation: | |
""" | |
Create explanation for why this result was detected. | |
:param original_score: Score given by this recognizer | |
:param explanation: Explanation string | |
:return: | |
""" | |
explanation = AnalysisExplanation( | |
recognizer=self.__class__.__name__, | |
original_score=original_score, | |
textual_explanation=explanation, | |
) | |
return explanation | |
def __check_label( | |
entity: str, label: str, check_label_groups: Tuple[Set, Set] | |
) -> bool: | |
return any( | |
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups] | |
) | |