import gradio as gr from torchvision.transforms import Compose, Resize, ToTensor, Normalize from PIL import Image from torchvision.utils import save_image from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet transform = Compose( [ Resize((256, 256), Image.BICUBIC), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) model = GeneratorUNet.from_pretrained('huggan/pix2pix-map') def predict_fn(img): inp = transform(img).unsqueeze(0) out = model(inp) save_image(out, 'out.png', normalize=True) return 'out.png' gr.Interface(predict_fn, inputs=gr.inputs.Image(type='pil'), outputs='image', examples=[['sample.jpg'], ['sample2.jpg'], ['sample3.jpg']]).launch()