Spaces:
Build error
Build error
import os | |
import whisper | |
from gtts import gTTS | |
from dotenv import load_dotenv | |
import openai | |
import streamlit as st | |
import tempfile | |
from pydub import AudioSegment | |
import wave | |
import pyaudio | |
# Load environment variables | |
load_dotenv() | |
# Initialize Whisper Model | |
def load_whisper_model(): | |
return whisper.load_model("medium") | |
whisper_model = load_whisper_model() | |
# Streamlit UI | |
st.title("Conversational AI with Speech-to-Speech Response") | |
st.write("Upload an audio file or record your voice to start the process.") | |
# Add a sidebar for interaction options | |
interaction_mode = st.sidebar.selectbox( | |
"Choose Interaction Mode:", ["Record Voice", "Upload Audio"] | |
) | |
# Record Voice Functionality using pydub and pyaudio | |
def record_audio(filename, duration=5, sample_rate=44100): | |
st.info(f"Recording for {duration} seconds...") | |
p = pyaudio.PyAudio() | |
# Open a stream for recording | |
stream = p.open(format=pyaudio.paInt16, channels=1, rate=sample_rate, input=True, frames_per_buffer=1024) | |
frames = [] | |
for _ in range(0, int(sample_rate / 1024 * duration)): | |
data = stream.read(1024) | |
frames.append(data) | |
stream.stop_stream() | |
stream.close() | |
p.terminate() | |
# Save the recorded frames as a WAV file | |
with wave.open(filename, 'wb') as wf: | |
wf.setnchannels(1) | |
wf.setsampwidth(p.get_sample_size(pyaudio.paInt16)) | |
wf.setframerate(sample_rate) | |
wf.writeframes(b''.join(frames)) | |
st.success("Recording complete!") | |
# Process Audio Input | |
if interaction_mode == "Record Voice": | |
duration = st.slider("Select Recording Duration (seconds):", min_value=10, max_value=120, step=10) | |
record_btn = st.button("Start Recording") | |
if record_btn: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: | |
record_audio(temp_audio.name, duration=duration) | |
temp_audio_path = temp_audio.name | |
st.audio(temp_audio_path, format="audio/wav") | |
elif interaction_mode == "Upload Audio": | |
uploaded_file = st.file_uploader("Upload your audio file (MP3/WAV)", type=["mp3", "wav"]) | |
if uploaded_file is not None: | |
# Save the uploaded file temporarily | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio: | |
temp_audio.write(uploaded_file.read()) | |
temp_audio_path = temp_audio.name | |
st.audio(temp_audio_path, format="audio/mp3") | |
# Process and Transcribe Audio | |
if 'temp_audio_path' in locals() and temp_audio_path is not None: | |
st.write("Processing the audio file...") | |
# If the uploaded or recorded audio is in MP3 format, convert it to WAV for Whisper | |
if temp_audio_path.endswith(".mp3"): | |
audio = AudioSegment.from_mp3(temp_audio_path) | |
temp_audio_path = temp_audio_path.replace(".mp3", ".wav") | |
audio.export(temp_audio_path, format="wav") | |
# Transcribe audio using Whisper | |
result = whisper_model.transcribe(temp_audio_path) | |
user_text = result["text"] | |
st.write("Transcribed Text:", user_text) | |
# Generate AI Response | |
st.write("Generating a conversational response...") | |
client = openai.OpenAI( | |
api_key=os.environ.get("SAMBANOVA_API_KEY"), | |
base_url="https://api.sambanova.ai/v1", | |
) | |
response = client.chat.completions.create( | |
model='Meta-Llama-3.1-8B-Instruct', | |
messages=[ | |
{"role": "system", "content": ( | |
"You are a kind, empathetic, and intelligent assistant capable of meaningful conversations and emotional support. " | |
"Your primary goals are: " | |
"1. To engage in casual, friendly, and supportive conversations when the user seeks companionship or emotional relief. " | |
"2. To adapt your tone and responses to match the user's mood, providing warmth and encouragement if they seem distressed or seeking emotional support. " | |
"3. To answer questions accurately and provide explanations when asked, adjusting the depth and length of your answers based on the user's needs. " | |
"4. To maintain a positive and non-judgmental tone, offering helpful advice or lighthearted dialogue when appropriate. " | |
"5. To ensure the user feels heard, understood, and valued during every interaction. " | |
"If the user does not ask a question, keep the conversation engaging and meaningful by responding thoughtfully or with light humor where appropriate." | |
)}, | |
{"role": "user", "content": user_text}, | |
], | |
temperature=0.1, | |
top_p=0.1, | |
) | |
answer = response.choices[0].message.content | |
st.write("Response:", answer) | |
# Convert response text to speech using gTTS | |
st.write("Converting the response to speech...") | |
tts = gTTS(text=answer, slow=False) | |
response_audio_path = "final_response.mp3" | |
tts.save(response_audio_path) | |
# Play and download the response MP3 | |
st.audio(response_audio_path, format="audio/mp3") | |
st.download_button( | |
label="Download the Response", | |
data=open(response_audio_path, "rb"), | |
file_name="final_response.mp3", | |
mime="audio/mpeg", | |
) | |
# Clean up temporary files | |
os.remove(temp_audio_path) | |
os.remove(response_audio_path) | |