import os import whisper from gtts import gTTS from dotenv import load_dotenv import openai import streamlit as st import tempfile from pydub import AudioSegment import wave import pyaudio # Load environment variables load_dotenv() # Initialize Whisper Model @st.cache_resource def load_whisper_model(): return whisper.load_model("medium") whisper_model = load_whisper_model() # Streamlit UI st.title("Conversational AI with Speech-to-Speech Response") st.write("Upload an audio file or record your voice to start the process.") # Add a sidebar for interaction options interaction_mode = st.sidebar.selectbox( "Choose Interaction Mode:", ["Record Voice", "Upload Audio"] ) # Record Voice Functionality using pydub and pyaudio def record_audio(filename, duration=5, sample_rate=44100): st.info(f"Recording for {duration} seconds...") p = pyaudio.PyAudio() # Open a stream for recording stream = p.open(format=pyaudio.paInt16, channels=1, rate=sample_rate, input=True, frames_per_buffer=1024) frames = [] for _ in range(0, int(sample_rate / 1024 * duration)): data = stream.read(1024) frames.append(data) stream.stop_stream() stream.close() p.terminate() # Save the recorded frames as a WAV file with wave.open(filename, 'wb') as wf: wf.setnchannels(1) wf.setsampwidth(p.get_sample_size(pyaudio.paInt16)) wf.setframerate(sample_rate) wf.writeframes(b''.join(frames)) st.success("Recording complete!") # Process Audio Input if interaction_mode == "Record Voice": duration = st.slider("Select Recording Duration (seconds):", min_value=10, max_value=120, step=10) record_btn = st.button("Start Recording") if record_btn: with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: record_audio(temp_audio.name, duration=duration) temp_audio_path = temp_audio.name st.audio(temp_audio_path, format="audio/wav") elif interaction_mode == "Upload Audio": uploaded_file = st.file_uploader("Upload your audio file (MP3/WAV)", type=["mp3", "wav"]) if uploaded_file is not None: # Save the uploaded file temporarily with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio: temp_audio.write(uploaded_file.read()) temp_audio_path = temp_audio.name st.audio(temp_audio_path, format="audio/mp3") # Process and Transcribe Audio if 'temp_audio_path' in locals() and temp_audio_path is not None: st.write("Processing the audio file...") # If the uploaded or recorded audio is in MP3 format, convert it to WAV for Whisper if temp_audio_path.endswith(".mp3"): audio = AudioSegment.from_mp3(temp_audio_path) temp_audio_path = temp_audio_path.replace(".mp3", ".wav") audio.export(temp_audio_path, format="wav") # Transcribe audio using Whisper result = whisper_model.transcribe(temp_audio_path) user_text = result["text"] st.write("Transcribed Text:", user_text) # Generate AI Response st.write("Generating a conversational response...") client = openai.OpenAI( api_key=os.environ.get("SAMBANOVA_API_KEY"), base_url="https://api.sambanova.ai/v1", ) response = client.chat.completions.create( model='Meta-Llama-3.1-8B-Instruct', messages=[ {"role": "system", "content": ( "You are a kind, empathetic, and intelligent assistant capable of meaningful conversations and emotional support. " "Your primary goals are: " "1. To engage in casual, friendly, and supportive conversations when the user seeks companionship or emotional relief. " "2. To adapt your tone and responses to match the user's mood, providing warmth and encouragement if they seem distressed or seeking emotional support. " "3. To answer questions accurately and provide explanations when asked, adjusting the depth and length of your answers based on the user's needs. " "4. To maintain a positive and non-judgmental tone, offering helpful advice or lighthearted dialogue when appropriate. " "5. To ensure the user feels heard, understood, and valued during every interaction. " "If the user does not ask a question, keep the conversation engaging and meaningful by responding thoughtfully or with light humor where appropriate." )}, {"role": "user", "content": user_text}, ], temperature=0.1, top_p=0.1, ) answer = response.choices[0].message.content st.write("Response:", answer) # Convert response text to speech using gTTS st.write("Converting the response to speech...") tts = gTTS(text=answer, slow=False) response_audio_path = "final_response.mp3" tts.save(response_audio_path) # Play and download the response MP3 st.audio(response_audio_path, format="audio/mp3") st.download_button( label="Download the Response", data=open(response_audio_path, "rb"), file_name="final_response.mp3", mime="audio/mpeg", ) # Clean up temporary files os.remove(temp_audio_path) os.remove(response_audio_path)