prathmeshrmadhu commited on
Commit
17b96f6
·
1 Parent(s): 1fd5d6c

trying to only keep detection and limiting models in yaml

Browse files
model_dict/detection.yaml CHANGED
@@ -3,40 +3,4 @@ Faster R-CNN (R-50-FPN):
3
  model: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
4
  Faster R-CNN (X-101-64x4d-FPN):
5
  config: https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py
6
- model: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204-833ee192.pth
7
- SSD (VGG16):
8
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/ssd/ssd512_coco.py
9
- model: https://download.openmmlab.com/mmdetection/v2.0/ssd/ssd512_coco/ssd512_coco_20210803_022849-0a47a1ca.pth
10
- RetinaNet (X-101-64x4d-FPN):
11
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet/retinanet_x101_64x4d_fpn_mstrain_640-800_3x_coco.py
12
- model: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_mstrain_3x_coco/retinanet_x101_64x4d_fpn_mstrain_3x_coco_20210719_051838-022c2187.pth
13
- YOLOv3 (DarkNet-53 608):
14
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/yolo/yolov3_d53_mstrain-608_273e_coco.py
15
- model: https://download.openmmlab.com/mmdetection/v2.0/yolo/yolov3_d53_mstrain-608_273e_coco/yolov3_d53_mstrain-608_273e_coco_20210518_115020-a2c3acb8.pth
16
- CornerNet (HourglassNet-104):
17
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco.py
18
- model: https://download.openmmlab.com/mmdetection/v2.0/cornernet/cornernet_hourglass104_mstest_10x5_210e_coco/cornernet_hourglass104_mstest_10x5_210e_coco_20200824_185720-5fefbf1c.pth
19
- FCOS (X-101):
20
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py
21
- model: https://download.openmmlab.com/mmdetection/v2.0/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco-ede514a8.pth
22
- DETR:
23
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/detr/detr_r50_8x2_150e_coco.py
24
- model: https://download.openmmlab.com/mmdetection/v2.0/detr/detr_r50_8x2_150e_coco/detr_r50_8x2_150e_coco_20201130_194835-2c4b8974.pth
25
- YOLOX-tiny:
26
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox/yolox_tiny_8x8_300e_coco.py
27
- model: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth
28
- YOLOX-s:
29
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox/yolox_s_8x8_300e_coco.py
30
- model: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth
31
- YOLOX-l:
32
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox/yolox_l_8x8_300e_coco.py
33
- model: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth
34
- YOLOX-x:
35
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/yolox/yolox_x_8x8_300e_coco.py
36
- model: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth
37
- Deformable DETR (R-50 two-stage Deformable DETR):
38
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco.py
39
- model: https://download.openmmlab.com/mmdetection/v2.0/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco/deformable_detr_twostage_refine_r50_16x2_50e_coco_20210419_220613-9d28ab72.pth
40
- TOOD (R-101-dcnv2):
41
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/tood/tood_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py
42
- model: https://download.openmmlab.com/mmdetection/v2.0/tood/tood_r101_fpn_dconv_c3-c5_mstrain_2x_coco/tood_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20211210_213728-4a824142.pth
 
3
  model: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
4
  Faster R-CNN (X-101-64x4d-FPN):
5
  config: https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py
6
+ model: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204-833ee192.pth
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model_dict/instance_segmentation.yaml CHANGED
@@ -1,51 +1,3 @@
1
  Mask R-CNN (R-50-FPN):
2
  config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
3
- model: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_fpn_mstrain-poly_3x_coco_20210524_201154-21b550bb.pth
4
- Mask R-CNN (X-101-64x4d-FPN):
5
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
6
- model: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco_20210526_120447-c376f129.pth
7
- Cascade Mask R-CNN (X-101-64x4d-FPN):
8
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
9
- model: https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco/cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco_20210719_210311-d3e64ba0.pth
10
- Mask Scoring R-CNN (R-X101-64x4d):
11
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py
12
- model: https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco/ms_rcnn_x101_64x4d_fpn_1x_coco_20200206-86ba88d2.pth
13
- HTC (X-101-64x4d-FPN):
14
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/htc/htc_x101_64x4d_fpn_16x1_20e_coco.py
15
- model: https://download.openmmlab.com/mmdetection/v2.0/htc/htc_x101_64x4d_fpn_16x1_20e_coco/htc_x101_64x4d_fpn_16x1_20e_coco_20200318-b181fd7a.pth
16
- YOLACT:
17
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/yolact/yolact_r50_1x8_coco.py
18
- model: https://download.openmmlab.com/mmdetection/v2.0/yolact/yolact_r50_1x8_coco/yolact_r50_1x8_coco_20200908-f38d58df.pth
19
- Instaboost (Mask R-CNN (X-101-64x4d-FPN)):
20
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
21
- model: https://download.openmmlab.com/mmdetection/v2.0/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco_20200515_080947-8ed58c1b.pth
22
- SOLO:
23
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/solo/solo_r50_fpn_3x_coco.py
24
- model: https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_3x_coco/solo_r50_fpn_3x_coco_20210901_012353-11d224d7.pth
25
- PointRend (R-50-FPN):
26
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco.py
27
- model: https://download.openmmlab.com/mmdetection/v2.0/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco/point_rend_r50_caffe_fpn_mstrain_3x_coco-e0ebb6b7.pth
28
- DetectoRS (HTC + ResNet-101):
29
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/detectors/detectors_htc_r101_20e_coco.py
30
- model: https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_htc_r101_20e_coco/detectors_htc_r101_20e_coco_20210419_203638-348d533b.pth
31
- SOLOv2 (R-50):
32
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/solov2/solov2_r50_fpn_3x_coco.py
33
- model: https://download.openmmlab.com/mmdetection/v2.0/solov2/solov2_r50_fpn_3x_coco/solov2_r50_fpn_3x_coco_20220512_125856-fed092d4.pth
34
- SOLOv2 (X-101 (DCN)):
35
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/solov2/solov2_x101_dcn_fpn_3x_coco.py
36
- model: https://download.openmmlab.com/mmdetection/v2.0/solov2/solov2_x101_dcn_fpn_3x_coco/solov2_x101_dcn_fpn_3x_coco_20220513_214337-aef41095.pth
37
- SCNet (X-101-64x4d-FPN):
38
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/scnet/scnet_x101_64x4d_fpn_20e_coco.py
39
- model: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_x101_64x4d_fpn_20e_coco/scnet_x101_64x4d_fpn_20e_coco-fb09dec9.pth
40
- QueryInst (R-50-FPN):
41
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/queryinst/queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
42
- model: https://download.openmmlab.com/mmdetection/v2.0/queryinst/queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco/queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20210904_101802-85cffbd8.pth
43
- QueryInst (R-101-FPN):
44
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/queryinst/queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
45
- model: https://download.openmmlab.com/mmdetection/v2.0/queryinst/queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco/queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20210904_153621-76cce59f.pth
46
- Mask2Former (R-50):
47
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask2former/mask2former_r50_lsj_8x2_50e_coco.py
48
- model: https://download.openmmlab.com/mmdetection/v2.0/mask2former/mask2former_r50_lsj_8x2_50e_coco/mask2former_r50_lsj_8x2_50e_coco_20220506_191028-8e96e88b.pth
49
- Mask2Former (Swin-S):
50
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco.py
51
- model: https://download.openmmlab.com/mmdetection/v2.0/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco_20220504_001756-743b7d99.pth
 
1
  Mask R-CNN (R-50-FPN):
2
  config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
3
+ model: https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_fpn_mstrain-poly_3x_coco_20210524_201154-21b550bb.pth
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model_dict/panoptic_segmentation.yaml CHANGED
@@ -1,15 +1,3 @@
1
  Panoptic FPN (R-50-FPN):
2
  config: https://github.com/open-mmlab/mmdetection/tree/master/configs/panoptic_fpn/panoptic_fpn_r50_fpn_mstrain_3x_coco.py
3
- model: https://download.openmmlab.com/mmdetection/v2.0/panoptic_fpn/panoptic_fpn_r50_fpn_mstrain_3x_coco/panoptic_fpn_r50_fpn_mstrain_3x_coco_20210824_171155-5650f98b.pth
4
- MaskFormer (R-50):
5
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/maskformer/maskformer_r50_mstrain_16x1_75e_coco.py
6
- model: https://download.openmmlab.com/mmdetection/v2.0/maskformer/maskformer_r50_mstrain_16x1_75e_coco/maskformer_r50_mstrain_16x1_75e_coco_20220221_141956-bc2699cb.pth
7
- MaskFormer (Swin-L):
8
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/maskformer/maskformer_swin-l-p4-w12_mstrain_64x1_300e_coco.py
9
- model: https://download.openmmlab.com/mmdetection/v2.0/maskformer/maskformer_swin-l-p4-w12_mstrain_64x1_300e_coco/maskformer_swin-l-p4-w12_mstrain_64x1_300e_coco_20220326_221612-061b4eb8.pth
10
- Mask2Former (R-50):
11
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask2former/mask2former_r50_lsj_8x2_50e_coco-panoptic.py
12
- model: https://download.openmmlab.com/mmdetection/v2.0/mask2former/mask2former_r50_lsj_8x2_50e_coco-panoptic/mask2former_r50_lsj_8x2_50e_coco-panoptic_20220326_224516-11a44721.pth
13
- Mask2Former (Swin-L):
14
- config: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask2former/mask2former_swin-l-p4-w12-384-in21k_lsj_16x1_100e_coco-panoptic.py
15
- model: https://download.openmmlab.com/mmdetection/v2.0/mask2former/mask2former_swin-l-p4-w12-384-in21k_lsj_16x1_100e_coco-panoptic/mask2former_swin-l-p4-w12-384-in21k_lsj_16x1_100e_coco-panoptic_20220407_104949-d4919c44.pth
 
1
  Panoptic FPN (R-50-FPN):
2
  config: https://github.com/open-mmlab/mmdetection/tree/master/configs/panoptic_fpn/panoptic_fpn_r50_fpn_mstrain_3x_coco.py
3
+ model: https://download.openmmlab.com/mmdetection/v2.0/panoptic_fpn/panoptic_fpn_r50_fpn_mstrain_3x_coco/panoptic_fpn_r50_fpn_mstrain_3x_coco_20210824_171155-5650f98b.pth