Spaces:
Sleeping
Sleeping
#import torch | |
#from transformers import AutoTokenizer, AutoModelForCausalLM | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_community.llms import HuggingFaceTextGenInference | |
# Load your Telugu model | |
""" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model_name = "Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) """ | |
ENDPOINT_URL = "https://api-inference.huggingface.co/models/Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct" | |
HF_TOKEN = os.getenv("huggingface_token") | |
llm = HuggingFaceTextGenInference( | |
inference_server_url=ENDPOINT_URL, | |
max_new_tokens=512, | |
top_k=50, | |
temperature=0.1, | |
repetition_penalty=1.03, | |
server_kwargs={ | |
"headers": { | |
"Authorization": f"Bearer {HF_TOKEN}", | |
"Content-Type": "application/json", | |
} | |
}, | |
) | |
def summarize(text, llm): | |
instruction = "కింది వచనాన్ని సంగ్రహించండి: " | |
prompt = instruction + text | |
response = llm(prompt) | |
return response | |
input_text = "గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ..." | |
result = summarize(input_text, llm) | |
print(result) |