telugu-llm / app.py
prathyush27's picture
Update app.py
77b6db9 verified
#import torch
#from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain_community.llms import HuggingFaceHub
from langchain_community.llms import HuggingFaceTextGenInference
# Load your Telugu model
""" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_name = "Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) """
ENDPOINT_URL = "https://api-inference.huggingface.co/models/Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct"
HF_TOKEN = os.getenv("huggingface_token")
llm = HuggingFaceTextGenInference(
inference_server_url=ENDPOINT_URL,
max_new_tokens=512,
top_k=50,
temperature=0.1,
repetition_penalty=1.03,
server_kwargs={
"headers": {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json",
}
},
)
def summarize(text, llm):
instruction = "కింది వచనాన్ని సంగ్రహించండి: "
prompt = instruction + text
response = llm(prompt)
return response
input_text = "గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ..."
result = summarize(input_text, llm)
print(result)