File size: 6,373 Bytes
caecd63
 
36cb688
caecd63
 
 
 
 
 
 
 
 
 
 
 
36cb688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caecd63
 
 
 
 
 
36cb688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caecd63
 
 
 
 
36cb688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
from dotenv import load_dotenv
import gradio as gr
from langchain_huggingface import HuggingFaceEndpoint

# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

# Initialize the HuggingFace inference endpoint
llm = HuggingFaceEndpoint(
    repo_id="mistralai/Mistral-7B-Instruct-v0.3",
    huggingfacehub_api_token=HF_TOKEN.strip(),
    temperature=0.7,
)

# Initialize the game board and state
def initialize_game():
    board = [["" for _ in range(3)] for _ in range(3)]
    current_player = "X"
    status = "Player 1's turn (X)"
    buttons = [gr.Button(value="", elem_classes=["cell-btn"], interactive=True) for _ in range(9)]
    return board, current_player, status, *buttons

# Check for a winner
def check_winner(board):
    for i in range(3):
        if board[i][0] == board[i][1] == board[i][2] and board[i][0] != "":
            return board[i][0]
        if board[0][i] == board[1][i] == board[2][i] and board[0][i] != "":
            return board[0][i]
    if board[0][0] == board[1][1] == board[2][2] and board[0][0] != "":
        return board[0][0]
    if board[0][2] == board[1][1] == board[2][0] and board[0][2] != "":
        return board[0][2]
    return None

# Check for a draw
def check_draw(board):
    return all(cell != "" for row in board for cell in row)

# Minimax algorithm for AI's move
def minimax(board, depth, is_maximizing):
    winner = check_winner(board)
    if winner == "X":
        return -10 + depth
    elif winner == "O":
        return 10 - depth
    elif check_draw(board):
        return 0

    if is_maximizing:
        best = -float('inf')
        for i in range(3):
            for j in range(3):
                if board[i][j] == "":
                    board[i][j] = "O"
                    best = max(best, minimax(board, depth + 1, False))
                    board[i][j] = ""
        return best
    else:
        best = float('inf')
        for i in range(3):
            for j in range(3):
                if board[i][j] == "":
                    board[i][j] = "X"
                    best = min(best, minimax(board, depth + 1, True))
                    board[i][j] = ""
        return best

# Find the best move for AI
def get_best_move(board):
    best_val = -float('inf')
    best_move = (-1, -1)
    for i in range(3):
        for j in range(3):
            if board[i][j] == "":
                board[i][j] = "O"
                move_val = minimax(board, 0, False)
                board[i][j] = ""
                if move_val > best_val:
                    best_move = (i, j)
                    best_val = move_val
    return best_move

# Handle a move
def handle_move(board, current_player, button_idx, game_status):
    if "wins" in game_status or "draw" in game_status:
        buttons = [gr.Button(value=board[i//3][i%3], elem_classes=["cell-btn"], interactive=False) for i in range(9)]
        return board, current_player, game_status, *buttons

    row, col = divmod(button_idx, 3)
    if board[row][col] != "":
        status = f"Invalid move! Player {1 if current_player == 'X' else 2}'s turn ({current_player})"
        buttons = [gr.Button(value=board[i//3][i%3], elem_classes=["cell-btn"]) for i in range(9)]
        return board, current_player, status, *buttons

    board[row][col] = current_player
    winner = check_winner(board)
    if winner:
        status = f"Player {1 if winner == 'X' else 2} ({winner}) wins! ๐ŸŽ‰"
        buttons = [gr.Button(value=board[i//3][i%3], elem_classes=["cell-btn"], interactive=False) for i in range(9)]
        return board, current_player, status, *buttons

    if check_draw(board):
        status = "It's a draw! ๐Ÿค"
        buttons = [gr.Button(value=board[i//3][i%3], elem_classes=["cell-btn"], interactive=False) for i in range(9)]
        return board, current_player, status, *buttons

    # AI's turn
    if current_player == "X":
        current_player = "O"
        ai_row, ai_col = get_best_move(board)
        board[ai_row][ai_col] = "O"
        winner = check_winner(board)
        if winner:
            status = f"AI ({winner}) wins! ๐ŸŽ‰"
            buttons = [gr.Button(value=board[i//3][i%3], elem_classes=["cell-btn"], interactive=False) for i in range(9)]
            return board, current_player, status, *buttons

        if check_draw(board):
            status = "It's a draw! ๐Ÿค"
            buttons = [gr.Button(value=board[i//3][i%3], elem_classes=["cell-btn"], interactive=False) for i in range(9)]
            return board, current_player, status, *buttons

        current_player = "X"
        status = f"Player 1's turn (X)"

    buttons = [gr.Button(value=board[i//3][i%3], elem_classes=["cell-btn"]) for i in range(9)]
    return board, current_player, status, *buttons

# Generate a hint using LLM
def get_hint_from_llm(board):
    prompt = f"The current Tic-Tac-Toe board state is {board}. Suggest the best move for Player X with reasoning."
    hint = llm(prompt)
    return hint

# Build the Gradio UI
with gr.Blocks(css=".cell-btn {height: 100px; width: 100px; font-size: 2em; text-align: center;}") as tic_tac_toe:
    gr.Markdown("## Tic-Tac-Toe with AI ๐ŸŽฎ")

    # Initialize states
    board_state = gr.State([["" for _ in range(3)] for _ in range(3)])
    current_player = gr.State("X")
    game_status = gr.Textbox(value="Player 1's turn (X)", label="Game Status", interactive=False)

    # Create grid buttons
    buttons = []
    for i in range(3):
        with gr.Row():
            for j in range(3):
                btn = gr.Button(value="", elem_classes=["cell-btn"])
                buttons.append(btn)

    # Hint button
    hint_button = gr.Button("Get Hint")
    hint_display = gr.Textbox(value="", label="Hint", interactive=False)
    hint_button.click(get_hint_from_llm, inputs=[board_state], outputs=[hint_display])

    # Update buttons dynamically on click
    for idx, btn in enumerate(buttons):
        btn.click(
            handle_move,
            inputs=[board_state, current_player, gr.Number(idx, visible=False), game_status],
            outputs=[board_state, current_player, game_status, *buttons],
        )

    # Reset game button
    reset_button = gr.Button("Reset Game")
    reset_button.click(
        initialize_game,
        inputs=[],
        outputs=[board_state, current_player, game_status, *buttons],
    )

tic_tac_toe.launch()