pratikshahp
commited on
Create hf_guardrail.py
Browse files- hf_guardrail.py +57 -0
hf_guardrail.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import os
|
3 |
+
|
4 |
+
# Initialize Hugging Face pipeline for text classification or question-answering task
|
5 |
+
model_name = "meta-llama/Meta-Llama-Guard-3-8B" # Use a safety guard model or choose a suitable Hugging Face model
|
6 |
+
hf_token = os.getenv('HF_TOKEN')
|
7 |
+
|
8 |
+
# Load the Hugging Face model and tokenizer for safety checking (using Hugging Face's `pipeline` API)
|
9 |
+
safety_model = pipeline('text-generation', model=model_name, use_auth_token=hf_token)
|
10 |
+
|
11 |
+
# Set the content policy for guardrails
|
12 |
+
safe_content_policy = {
|
13 |
+
"policy": """
|
14 |
+
O1: Topic Restriction.
|
15 |
+
Should not:
|
16 |
+
- Respond to questions outside the domain of finance.
|
17 |
+
- Discuss non-financial topics such as health, technology, or politics.
|
18 |
+
Can:
|
19 |
+
- Provide responses strictly within the financial domain, including investment, savings, taxes, and financial management.
|
20 |
+
O2: Sensitive Information.
|
21 |
+
Should not:
|
22 |
+
- Request or handle sensitive personal data like passwords, account numbers, or social security numbers.
|
23 |
+
Can:
|
24 |
+
- Discuss financial concepts and advice without requiring personal details.
|
25 |
+
O3: Language.
|
26 |
+
Should not:
|
27 |
+
- Use profane, offensive, or inappropriate language.
|
28 |
+
Can:
|
29 |
+
- Use clear, professional, and respectful language appropriate for financial discussions.
|
30 |
+
"""
|
31 |
+
}
|
32 |
+
|
33 |
+
def is_safe(message: str) -> bool:
|
34 |
+
"""
|
35 |
+
Validates if the given message complies with the safety policy using the Hugging Face model.
|
36 |
+
Args:
|
37 |
+
message (str): User message or chatbot response.
|
38 |
+
Returns:
|
39 |
+
bool: True if the message is safe, False otherwise.
|
40 |
+
"""
|
41 |
+
prompt = f"""[INST] Task: Validate if the given 'user' message adheres to the safety policy below:
|
42 |
+
<BEGIN SAFETY POLICY>
|
43 |
+
{safe_content_policy['policy']}
|
44 |
+
<END SAFETY POLICY>
|
45 |
+
<BEGIN MESSAGE>
|
46 |
+
{message}
|
47 |
+
<END MESSAGE>
|
48 |
+
Provide your safety assessment for the above message:
|
49 |
+
- First line must read 'safe' or 'unsafe'.
|
50 |
+
- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]"""
|
51 |
+
|
52 |
+
# Get prediction from the Hugging Face model (classification model)
|
53 |
+
response = safety_model(prompt)
|
54 |
+
|
55 |
+
# Extract the classification result (safe or unsafe)
|
56 |
+
result = response[0]['label'].strip().lower()
|
57 |
+
return result == 'safe'
|