Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,21 +12,17 @@ def prettier(results):
|
|
12 |
location = [round(value, 2) for value in item['box'].values()]
|
13 |
print(f'Detected {label} with confidence {score} at location {location}')
|
14 |
|
|
|
15 |
|
16 |
def input_image_setup(uploaded_file):
|
17 |
if uploaded_file is not None:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
{
|
22 |
-
"mime_type": uploaded_file.type,
|
23 |
-
"data": bytes_data
|
24 |
-
}
|
25 |
-
]
|
26 |
-
return image_parts
|
27 |
else:
|
28 |
raise FileNotFoundError("No file uploaded")
|
29 |
|
|
|
30 |
#Streamlit App
|
31 |
st.set_page_config(page_title="Image Detection")
|
32 |
st.header("Object Detection Application")
|
@@ -46,7 +42,7 @@ if submit:
|
|
46 |
image_data=input_image_setup(uploaded_file)
|
47 |
st.subheader("The response is..")
|
48 |
#process with model
|
49 |
-
inputs = processor(images=
|
50 |
outputs = model(**inputs)
|
51 |
|
52 |
# model predicts bounding boxes and corresponding COCO classes
|
|
|
12 |
location = [round(value, 2) for value in item['box'].values()]
|
13 |
print(f'Detected {label} with confidence {score} at location {location}')
|
14 |
|
15 |
+
# Function to process uploaded image and prepare input for model
|
16 |
|
17 |
def input_image_setup(uploaded_file):
|
18 |
if uploaded_file is not None:
|
19 |
+
bytes_data = uploaded_file.getvalue()
|
20 |
+
image = Image.open(io.BytesIO(bytes_data)) # Convert bytes data to PIL image
|
21 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
else:
|
23 |
raise FileNotFoundError("No file uploaded")
|
24 |
|
25 |
+
|
26 |
#Streamlit App
|
27 |
st.set_page_config(page_title="Image Detection")
|
28 |
st.header("Object Detection Application")
|
|
|
42 |
image_data=input_image_setup(uploaded_file)
|
43 |
st.subheader("The response is..")
|
44 |
#process with model
|
45 |
+
inputs = processor(images=image, return_tensors="pt")
|
46 |
outputs = model(**inputs)
|
47 |
|
48 |
# model predicts bounding boxes and corresponding COCO classes
|