Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,21 @@
|
|
1 |
import os
|
2 |
from PIL import Image
|
|
|
3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
def input_image_setup(uploaded_file):
|
5 |
if uploaded_file is not None:
|
6 |
-
#read
|
7 |
bytes_data = uploaded_file.getvalue()
|
8 |
image_parts=[
|
9 |
{
|
@@ -18,14 +30,34 @@ def input_image_setup(uploaded_file):
|
|
18 |
#Streamlit App
|
19 |
st.set_page_config(page_title="Image Detection")
|
20 |
st.header("Object Detection Application")
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
uploaded_file = st.file_uploader("choose an image...", type=["jpg","jpeg","png"])
|
22 |
image=""
|
23 |
if uploaded_file is not None:
|
24 |
image = Image.open(uploaded_file)
|
25 |
-
st.image(image, caption="Uploaded Image.", use_column_width=True)
|
26 |
submit = st.button("Detect Objects ")
|
27 |
-
|
28 |
if submit:
|
29 |
image_data=input_image_setup(uploaded_file)
|
30 |
st.subheader("The response is..")
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from PIL import Image
|
3 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
4 |
import streamlit as st
|
5 |
+
import torch
|
6 |
+
import requests
|
7 |
+
|
8 |
+
def prettier(results):
|
9 |
+
for item in results:
|
10 |
+
score = round(item['score'], 3)
|
11 |
+
label = item['label'] # Use square brackets to access the 'label' key
|
12 |
+
location = [round(value, 2) for value in item['box'].values()]
|
13 |
+
print(f'Detected {label} with confidence {score} at location {location}')
|
14 |
+
|
15 |
+
|
16 |
def input_image_setup(uploaded_file):
|
17 |
if uploaded_file is not None:
|
18 |
+
#read the file into byte
|
19 |
bytes_data = uploaded_file.getvalue()
|
20 |
image_parts=[
|
21 |
{
|
|
|
30 |
#Streamlit App
|
31 |
st.set_page_config(page_title="Image Detection")
|
32 |
st.header("Object Detection Application")
|
33 |
+
#Select your model
|
34 |
+
models = ["facebook/detr-resnet-50", "ciasimbaya/ObjectDetection", "hustvl/yolos-tiny"] # List of supported models
|
35 |
+
model_name = st.selectbox("Select model", models)
|
36 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
37 |
+
model = AutoModelForObjectDetection.from_pretrained(model_name)
|
38 |
+
#Upload an image
|
39 |
uploaded_file = st.file_uploader("choose an image...", type=["jpg","jpeg","png"])
|
40 |
image=""
|
41 |
if uploaded_file is not None:
|
42 |
image = Image.open(uploaded_file)
|
43 |
+
st.image(image, caption="Uploaded Image.", use_column_width=True)
|
44 |
submit = st.button("Detect Objects ")
|
|
|
45 |
if submit:
|
46 |
image_data=input_image_setup(uploaded_file)
|
47 |
st.subheader("The response is..")
|
48 |
+
#process with model
|
49 |
+
inputs = processor(images=image, return_tensors="pt")
|
50 |
+
outputs = model(**inputs)
|
51 |
+
|
52 |
+
# model predicts bounding boxes and corresponding COCO classes
|
53 |
+
logits = outputs.logits
|
54 |
+
bboxes = outputs.pred_boxes
|
55 |
+
# print results
|
56 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
57 |
+
results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0]
|
58 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
59 |
+
box = [round(i, 2) for i in box.tolist()]
|
60 |
+
print(
|
61 |
+
f"Detected {model.config.id2label[label.item()]} with confidence "
|
62 |
+
f"{round(score.item(), 3)} at location {box}"
|
63 |
+
)
|