Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,17 @@ import torch
|
|
2 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
import streamlit as st
|
4 |
from audio_recorder_streamlit import audio_recorder
|
|
|
5 |
|
6 |
# Function to transcribe audio to text
|
7 |
def transcribe_audio(audio_bytes):
|
8 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
9 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
10 |
|
11 |
-
|
|
|
|
|
|
|
12 |
logits = model(input_values).logits
|
13 |
predicted_ids = torch.argmax(logits, dim=-1)
|
14 |
transcription = processor.decode(predicted_ids[0])
|
|
|
2 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
import streamlit as st
|
4 |
from audio_recorder_streamlit import audio_recorder
|
5 |
+
import numpy as np
|
6 |
|
7 |
# Function to transcribe audio to text
|
8 |
def transcribe_audio(audio_bytes):
|
9 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
10 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
11 |
|
12 |
+
# Convert bytes to numpy array
|
13 |
+
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
|
14 |
+
|
15 |
+
input_values = processor(audio_array, return_tensors="pt", sampling_rate=16000).input_values
|
16 |
logits = model(input_values).logits
|
17 |
predicted_ids = torch.argmax(logits, dim=-1)
|
18 |
transcription = processor.decode(predicted_ids[0])
|