File size: 3,336 Bytes
d347764
cc6d9dc
ff3f816
d347764
 
 
 
6ab6711
32e9053
d347764
 
 
 
32e9053
d347764
32e9053
 
 
 
d347764
 
6ab6711
 
d347764
 
 
 
 
cc6d9dc
 
 
 
 
 
 
 
 
32e9053
 
 
 
d347764
 
 
6ab6711
 
 
 
d347764
 
 
 
 
ff3f816
d347764
 
 
 
 
f805e49
 
8bebf7d
 
f805e49
 
 
 
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
 
 
 
 
 
 
3946ba6
c737803
49c1298
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
import librosa
import logging
import numpy as np
import torch
from datasets import load_dataset

from transformers import VitsModel, VitsTokenizer
from transformers import WhisperForConditionalGeneration, WhisperProcessor


device = "cuda:0" if torch.cuda.is_available() else "cpu"

target_language = "french"
# load speech translation checkpoint
whisper_model_name = "openai/whisper-base"
whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
decoder_ids = whisper_processor.get_decoder_prompt_ids(language=target_language, task="transcribe")

# load text-to-speech checkpoint and speaker embeddings
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")




def translate(audio):
    if isinstance(audio, str):
        # Account for recorded audio
        audio = {
            "path": audio,
            "sampling_rate": 16_000,
            "array": librosa.load(audio, sr=16_000)[0]
        }
    elif audio["sampling_rate"] != 16_000:
        audio["array"] = librosa.resample(audio["array"], audio["sampling_rate"], 16_000)
    input_features = whisper_processor(audio["array"], sampling_rate=16000, return_tensors="pt").input_features
    predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=decoder_ids)
    translated_text = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
    return translated_text


def synthesise(text):
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = model(inputs["input_ids"])
    speech = outputs["waveform"]
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    logging.info(f"Translated Text: {translated_text}")
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/preetam8/speecht5_finetuned_voxpopuli_fr) model for text-to-speech finetuned for french:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

logging.getLogger().setLevel(logging.INFO)
demo.launch()