preetam8's picture
Fix commenting and gradio version
d386a01
raw
history blame
3.1 kB
import gradio as gr
import logging
import numpy as np
import torch
from transformers import VitsModel, VitsTokenizer, pipeline
from transformers import M2M100ForConditionalGeneration
from tokenization_small100 import SMALL100Tokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
target_language = "fr"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-small-cv11-french", device=device)
translation_model = M2M100ForConditionalGeneration.from_pretrained("alirezamsh/small100")
translation_tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100", tgt_lang=target_language)
# load text-to-speech checkpoint
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
eng_text = outputs["text"]
encoded_eng_text = translation_tokenizer(eng_text, return_tensors="pt")
generated_tokens = translation_model.generate(**encoded_eng_text)
translated_text = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
logging.info(f"Translated Text: {translated_text}")
return translated_text
def synthesise(text):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = model(inputs["input_ids"])
speech = outputs["waveform"][0]
logging.info(speech)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for ASR, the
[SMaLL-100](https://huggingface.co/alirezamsh/small100) model for text to text translation and Facebook's[MMS TTS-FRA](https://huggingface.co/facebook/mms-tts-fra) for text-to-speech for french:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
logging.getLogger().setLevel(logging.INFO)
demo.launch()