import gradio as gr import librosa import logging import numpy as np import torch from datasets import load_dataset from transformers import VitsModel, VitsTokenizer from transformers import WhisperForConditionalGeneration, WhisperProcessor device = "cuda:0" if torch.cuda.is_available() else "cpu" target_language = "french" # load speech translation checkpoint whisper_model_name = "openai/whisper-base" whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name) whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name) decoder_ids = whisper_processor.get_decoder_prompt_ids(language=target_language, task="transcribe") # load text-to-speech checkpoint and speaker embeddings model = VitsModel.from_pretrained("facebook/mms-tts-fra") tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra") def translate(audio): if isinstance(audio, str): # Account for recorded audio audio = { "path": audio, "sampling_rate": 16_000, "array": librosa.load(audio, sr=16_000)[0] } elif audio["sampling_rate"] != 16_000: audio["array"] = librosa.resample(audio["array"], audio["sampling_rate"], 16_000) input_features = whisper_processor(audio["array"], sampling_rate=16000, return_tensors="pt").input_features predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=decoder_ids) translated_text = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return translated_text def synthesise(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(inputs["input_ids"]) speech = outputs["waveform"] return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) logging.info(f"Translated Text: {translated_text}") synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's [SpeechT5 TTS](https://huggingface.co/preetam8/speecht5_finetuned_voxpopuli_fr) model for text-to-speech finetuned for french: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) logging.getLogger().setLevel(logging.INFO) demo.launch()