Spaces:
Running
Running
File size: 9,115 Bytes
1215818 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
"""Streamlit app for Presidio."""
from json import JSONEncoder
from typing import List
import pandas as pd
import spacy
import streamlit as st
from annotated_text import annotated_text
from presidio_analyzer import AnalyzerEngine, RecognizerResult, RecognizerRegistry
from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
from transformers_rec import (
STANFORD_COFIGURATION,
TransformersRecognizer,
BERT_DEID_CONFIGURATION,
)
# Helper methods
@st.cache_resource
def analyzer_engine(model_path: str):
"""Return AnalyzerEngine.
:param model_path: Which model to use for NER:
"StanfordAIMI/stanford-deidentifier-base",
"obi/deid_roberta_i2b2",
"en_core_web_lg"
"""
registry = RecognizerRegistry()
registry.load_predefined_recognizers()
# Set up NLP Engine according to the model of choice
if model_path == "en_core_web_lg":
if not spacy.util.is_package("en_core_web_lg"):
spacy.cli.download("en_core_web_lg")
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
}
else:
if not spacy.util.is_package("en_core_web_sm"):
spacy.cli.download("en_core_web_sm")
# Using a small spaCy model + a HF NER model
transformers_recognizer = TransformersRecognizer(model_path=model_path)
if model_path == "StanfordAIMI/stanford-deidentifier-base":
transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
elif model_path == "obi/deid_roberta_i2b2":
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)
# Use small spaCy model, no need for both spacy and HF models
# The transformers model is used here as a recognizer, not as an NlpEngine
nlp_configuration = {
"nlp_engine_name": "spacy",
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
}
registry.add_recognizer(transformers_recognizer)
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
return analyzer
@st.cache_resource
def anonymizer_engine():
"""Return AnonymizerEngine."""
return AnonymizerEngine()
@st.cache_data
def get_supported_entities():
"""Return supported entities from the Analyzer Engine."""
return analyzer_engine(st_model).get_supported_entities()
@st.cache_data
def analyze(**kwargs):
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
if "entities" not in kwargs or "All" in kwargs["entities"]:
kwargs["entities"] = None
return analyzer_engine(st_model).analyze(**kwargs)
def anonymize(text: str, analyze_results: List[RecognizerResult]):
"""Anonymize identified input using Presidio Anonymizer.
:param text: Full text
:param analyze_results: list of results from presidio analyzer engine
"""
if st_operator == "mask":
operator_config = {
"type": "mask",
"masking_char": st_mask_char,
"chars_to_mask": st_number_of_chars,
"from_end": False,
}
elif st_operator == "encrypt":
operator_config = {"key": st_encrypt_key}
elif st_operator == "highlight":
operator_config = {"lambda": lambda x: x}
else:
operator_config = None
if st_operator == "highlight":
operator = "custom"
else:
operator = st_operator
res = anonymizer_engine().anonymize(
text,
analyze_results,
operators={"DEFAULT": OperatorConfig(operator, operator_config)},
)
return res
def annotate(text: str, analyze_results: List[RecognizerResult]):
"""
Highlights every identified entity on top of the text.
:param text: full text
:param analyze_results: list of analyzer results.
"""
tokens = []
# Use the anonymizer to resolve overlaps
results = anonymize(text, analyze_results)
# sort by start index
results = sorted(results.items, key=lambda x: x.start)
for i, res in enumerate(results):
if i == 0:
tokens.append(text[: res.start])
# append entity text and entity type
tokens.append((text[res.start: res.end], res.entity_type))
# if another entity coming i.e. we're not at the last results element, add text up to next entity
if i != len(results) - 1:
tokens.append(text[res.end: results[i + 1].start])
# if no more entities coming, add all remaining text
else:
tokens.append(text[res.end:])
return tokens
st.set_page_config(page_title="Presidio demo", layout="wide")
# Sidebar
st.sidebar.header(
"""
PII De-Identification with Microsoft Presidio
"""
)
st.sidebar.info(
"Presidio is an open source customizable framework for PII detection and de-identification\n"
"[Code](https://aka.ms/presidio) | "
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
"[Installation](https://microsoft.github.io/presidio/installation/) | "
"[FAQ](https://microsoft.github.io/presidio/faq/)",
icon="ℹ️",
)
st.sidebar.markdown(
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)"
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)"
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
)
st_model = st.sidebar.selectbox(
"NER model",
[
"StanfordAIMI/stanford-deidentifier-base",
"obi/deid_roberta_i2b2",
"en_core_web_lg",
],
index=1,
)
st.sidebar.markdown("> Note: Models might take some time to download. ")
st_operator = st.sidebar.selectbox(
"De-identification approach",
["redact", "replace", "mask", "hash", "encrypt", "highlight"],
index=1,
)
if st_operator == "mask":
st_number_of_chars = st.sidebar.number_input(
"number of chars", value=15, min_value=0, max_value=100
)
st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1)
elif st_operator == "encrypt":
st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J")
st_threshold = st.sidebar.slider(
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
)
st_return_decision_process = st.sidebar.checkbox(
"Add analysis explanations to findings", value=False
)
st_entities = st.sidebar.multiselect(
label="Which entities to look for?",
options=get_supported_entities(),
default=list(get_supported_entities()),
)
# Main panel
analyzer_load_state = st.info("Starting Presidio analyzer...")
engine = analyzer_engine(model_path=st_model)
analyzer_load_state.empty()
# Read default text
with open("demo_text.txt") as f:
demo_text = f.readlines()
# Create two columns for before and after
col1, col2 = st.columns(2)
# Before:
col1.subheader("Input string:")
st_text = col1.text_area(
label="Enter text",
value="".join(demo_text),
height=400,
)
st_analyze_results = analyze(
text=st_text,
entities=st_entities,
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
)
# After
if st_operator != "highlight":
with col2:
st.subheader(f"Output")
st_anonymize_results = anonymize(st_text, st_analyze_results)
st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
else:
st.subheader("Highlighted")
annotated_tokens = annotate(st_text, st_analyze_results)
# annotated_tokens
annotated_text(*annotated_tokens)
# json result
class ToDictEncoder(JSONEncoder):
"""Encode dict to json."""
def default(self, o):
"""Encode to JSON using to_dict."""
return o.to_dict()
# table result
st.subheader(
"Findings" if not st_return_decision_process else "Findings with decision factors"
)
if st_analyze_results:
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
df["text"] = [st_text[res.start: res.end] for res in st_analyze_results]
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
{
"entity_type": "Entity type",
"text": "Text",
"start": "Start",
"end": "End",
"score": "Confidence",
},
axis=1,
)
df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
if st_return_decision_process:
analysis_explanation_df = pd.DataFrame.from_records(
[r.analysis_explanation.to_dict() for r in st_analyze_results]
)
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
else:
st.text("No findings")
|