presidio_demo / transformers_rec /transformers_recognizer.py
presidio's picture
Upload 7 files
1215818
raw
history blame
13.5 kB
import copy
import logging
from typing import Optional, List
import torch
from presidio_analyzer import (
RecognizerResult,
EntityRecognizer,
AnalysisExplanation,
)
from presidio_analyzer.nlp_engine import NlpArtifacts
from .configuration import BERT_DEID_CONFIGURATION
logger = logging.getLogger("presidio-analyzer")
try:
from transformers import (
AutoTokenizer,
AutoModelForTokenClassification,
pipeline,
TokenClassificationPipeline,
)
except ImportError:
logger.error("transformers_rec is not installed")
class TransformersRecognizer(EntityRecognizer):
"""
Wrapper for a transformers_rec model, if needed to be used within Presidio Analyzer.
The class loads models hosted on HuggingFace - https://huggingface.co/
and loads the model and tokenizer into a TokenClassification pipeline.
Samples are split into short text chunks, ideally shorter than max_length input_ids of the individual model,
to avoid truncation by the Tokenizer and loss of information
A configuration object should be maintained for each dataset-model combination and translate
entities names into a standardized view. A sample of a configuration file is attached in
the example.
:param supported_entities: List of entities to run inference on
:type supported_entities: Optional[List[str]]
:param pipeline: Instance of a TokenClassificationPipeline including a Tokenizer and a Model, defaults to None
:type pipeline: Optional[TokenClassificationPipeline], optional
:param model_path: string referencing a HuggingFace uploaded model to be used for Inference, defaults to None
:type model_path: Optional[str], optional
:example
>from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
>model_path = "obi/deid_roberta_i2b2"
>transformers_recognizer = TransformersRecognizer(model_path=model_path,
>supported_entities = model_configuration.get("PRESIDIO_SUPPORTED_ENTITIES"))
>transformers_recognizer.load_transformer(**model_configuration)
>registry = RecognizerRegistry()
>registry.add_recognizer(transformers_recognizer)
>analyzer = AnalyzerEngine(registry=registry)
>sample = "My name is Christopher and I live in Irbid."
>results = analyzer.analyze(sample, language="en",return_decision_process=True)
>for result in results:
> print(result,'----', sample[result.start:result.end])
"""
def load(self) -> None:
pass
def __init__(
self,
model_path: Optional[str] = None,
pipeline: Optional[TokenClassificationPipeline] = None,
supported_entities: Optional[List[str]] = None,
):
if not supported_entities:
supported_entities = BERT_DEID_CONFIGURATION[
"PRESIDIO_SUPPORTED_ENTITIES"
]
super().__init__(
supported_entities=supported_entities,
name=f"Transformers model {model_path}",
)
self.model_path = model_path
self.pipeline = pipeline
self.is_loaded = False
self.aggregation_mechanism = None
self.ignore_labels = None
self.model_to_presidio_mapping = None
self.entity_mapping = None
self.default_explanation = None
self.text_overlap_length = None
self.chunk_length = None
def load_transformer(self, **kwargs) -> None:
"""Load external configuration parameters and set default values.
:param kwargs: define default values for class attributes and modify pipeline behavior
**DATASET_TO_PRESIDIO_MAPPING (dict) - defines mapping entity strings from dataset format to Presidio format
**MODEL_TO_PRESIDIO_MAPPING (dict) - defines mapping entity strings from chosen model format to Presidio format
**SUB_WORD_AGGREGATION(str) - define how to aggregate sub-word tokens into full words and spans as defined
in HuggingFace https://huggingface.co/transformers/v4.8.0/main_classes/pipelines.html#transformers.TokenClassificationPipeline # noqa
**CHUNK_OVERLAP_SIZE (int) - number of overlapping characters in each text chunk
when splitting a single text into multiple inferences
**CHUNK_SIZE (int) - number of characters in each chunk of text
**LABELS_TO_IGNORE (List(str)) - List of entities to skip evaluation. Defaults to ["O"]
**DEFAULT_EXPLANATION (str) - string format to use for prediction explanations
"""
self.entity_mapping = kwargs.get("DATASET_TO_PRESIDIO_MAPPING", {})
self.model_to_presidio_mapping = kwargs.get("MODEL_TO_PRESIDIO_MAPPING", {})
self.ignore_labels = kwargs.get("LABELS_TO_IGNORE", ["O"])
self.aggregation_mechanism = kwargs.get("SUB_WORD_AGGREGATION", "simple")
self.default_explanation = kwargs.get("DEFAULT_EXPLANATION", None)
self.text_overlap_length = kwargs.get("CHUNK_OVERLAP_SIZE", 40)
self.chunk_length = kwargs.get("CHUNK_SIZE", 600)
if not self.pipeline:
if not self.model_path:
self.model_path = "obi/deid_roberta_i2b2"
logger.warning(
f"Both 'model' and 'model_path' arguments are None. Using default model_path={self.model_path}"
)
self._load_pipeline()
def _load_pipeline(self) -> None:
"""Initialize NER transformers_rec pipeline using the model_path provided"""
logging.debug(f"Initializing NER pipeline using {self.model_path} path")
device = 0 if torch.cuda.is_available() else -1
self.pipeline = pipeline(
"ner",
model=AutoModelForTokenClassification.from_pretrained(self.model_path),
tokenizer=AutoTokenizer.from_pretrained(self.model_path),
# Will attempt to group sub-entities to word level
aggregation_strategy=self.aggregation_mechanism,
device=device,
framework="pt",
ignore_labels=self.ignore_labels,
)
self.is_loaded = True
def get_supported_entities(self) -> List[str]:
"""
Return supported entities by this model.
:return: List of the supported entities.
"""
return self.supported_entities
# Class to use transformers_rec with Presidio as an external recognizer.
def analyze(
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
) -> List[RecognizerResult]:
"""
Analyze text using transformers_rec model to produce NER tagging.
:param text : The text for analysis.
:param entities: Not working properly for this recognizer.
:param nlp_artifacts: Not used by this recognizer.
:return: The list of Presidio RecognizerResult constructed from the recognized
transformers_rec detections.
"""
results = list()
# Run transformer model on the provided text
ner_results = self._get_ner_results_for_text(text)
for res in ner_results:
entity = self.model_to_presidio_mapping.get(res["entity_group"], None)
if not entity:
continue
res["entity_group"] = self.__check_label_transformer(res["entity_group"])
textual_explanation = self.default_explanation.format(res["entity_group"])
explanation = self.build_transformers_explanation(
float(round(res["score"], 2)), textual_explanation, res["word"]
)
transformers_result = self._convert_to_recognizer_result(res, explanation)
results.append(transformers_result)
return results
@staticmethod
def split_text_to_word_chunks(
input_length: int, chunk_length: int, overlap_length: int
) -> List[List]:
"""The function calculates chunks of text with size chunk_length. Each chunk has overlap_length number of
words to create context and continuity for the model
:param input_length: Length of input_ids for a given text
:type input_length: int
:param chunk_length: Length of each chunk of input_ids.
Should match the max input length of the transformer model
:type chunk_length: int
:param overlap_length: Number of overlapping words in each chunk
:type overlap_length: int
:return: List of start and end positions for individual text chunks
:rtype: List[List]
"""
if input_length < chunk_length:
return [[0, input_length]]
if chunk_length <= overlap_length:
logger.warning(
"overlap_length should be shorter than chunk_length, setting overlap_length to by half of chunk_length"
)
overlap_length = chunk_length // 2
return [
[i, min([i + chunk_length, input_length])]
for i in range(
0, input_length - overlap_length, chunk_length - overlap_length
)
]
def _get_ner_results_for_text(self, text: str) -> List[dict]:
"""The function runs model inference on the provided text.
The text is split into chunks with n overlapping characters.
The results are then aggregated and duplications are removed.
:param text: The text to run inference on
:type text: str
:return: List of entity predictions on the word level
:rtype: List[dict]
"""
model_max_length = self.pipeline.tokenizer.model_max_length
# calculate inputs based on the text
text_length = len(text)
# split text into chunks
logger.info(
f"splitting the text into chunks, length {text_length} > {model_max_length*2}"
)
predictions = list()
chunk_indexes = TransformersRecognizer.split_text_to_word_chunks(
text_length, self.chunk_length, self.text_overlap_length
)
# iterate over text chunks and run inference
for chunk_start, chunk_end in chunk_indexes:
chunk_text = text[chunk_start:chunk_end]
chunk_preds = self.pipeline(chunk_text)
# align indexes to match the original text - add to each position the value of chunk_start
aligned_predictions = list()
for prediction in chunk_preds:
prediction_tmp = copy.deepcopy(prediction)
prediction_tmp["start"] += chunk_start
prediction_tmp["end"] += chunk_start
aligned_predictions.append(prediction_tmp)
predictions.extend(aligned_predictions)
# remove duplicates
predictions = [dict(t) for t in {tuple(d.items()) for d in predictions}]
return predictions
@staticmethod
def _convert_to_recognizer_result(
prediction_result: dict, explanation: AnalysisExplanation
) -> RecognizerResult:
"""The method parses NER model predictions into a RecognizerResult format to enable down the stream analysis
:param prediction_result: A single example of entity prediction
:type prediction_result: dict
:param explanation: Textual representation of model prediction
:type explanation: str
:return: An instance of RecognizerResult which is used to model evaluation calculations
:rtype: RecognizerResult
"""
transformers_results = RecognizerResult(
entity_type=prediction_result["entity_group"],
start=prediction_result["start"],
end=prediction_result["end"],
score=float(round(prediction_result["score"], 2)),
analysis_explanation=explanation,
)
return transformers_results
def build_transformers_explanation(
self,
original_score: float,
explanation: str,
pattern: str,
) -> AnalysisExplanation:
"""
Create explanation for why this result was detected.
:param original_score: Score given by this recognizer
:param explanation: Explanation string
:param pattern: Regex pattern used
:return Structured explanation and scores of a NER model prediction
:rtype: AnalysisExplanation
"""
explanation = AnalysisExplanation(
recognizer=self.__class__.__name__,
original_score=float(original_score),
textual_explanation=explanation,
pattern=pattern,
)
return explanation
def __check_label_transformer(self, label: str) -> str:
"""The function validates the predicted label is identified by Presidio
and maps the string into a Presidio representation
:param label: Predicted label by the model
:type label: str
:return: Returns the predicted entity if the label is found in model_to_presidio mapping dictionary
and is supported by Presidio entities
:rtype: str
"""
if label == "O":
return label
# convert model label to presidio label
entity = self.model_to_presidio_mapping.get(label, None)
if entity is None:
logger.warning(f"Found unrecognized label {label}, returning entity as 'O'")
return "O"
if entity not in self.supported_entities:
logger.warning(f"Found entity {entity} which is not supported by Presidio")
return "O"
return entity