import copy import logging from typing import Optional, List import torch from presidio_analyzer import ( RecognizerResult, EntityRecognizer, AnalysisExplanation, ) from presidio_analyzer.nlp_engine import NlpArtifacts from .configuration import BERT_DEID_CONFIGURATION logger = logging.getLogger("presidio-analyzer") try: from transformers import ( AutoTokenizer, AutoModelForTokenClassification, pipeline, TokenClassificationPipeline, ) except ImportError: logger.error("transformers_rec is not installed") class TransformersRecognizer(EntityRecognizer): """ Wrapper for a transformers_rec model, if needed to be used within Presidio Analyzer. The class loads models hosted on HuggingFace - https://huggingface.co/ and loads the model and tokenizer into a TokenClassification pipeline. Samples are split into short text chunks, ideally shorter than max_length input_ids of the individual model, to avoid truncation by the Tokenizer and loss of information A configuration object should be maintained for each dataset-model combination and translate entities names into a standardized view. A sample of a configuration file is attached in the example. :param supported_entities: List of entities to run inference on :type supported_entities: Optional[List[str]] :param pipeline: Instance of a TokenClassificationPipeline including a Tokenizer and a Model, defaults to None :type pipeline: Optional[TokenClassificationPipeline], optional :param model_path: string referencing a HuggingFace uploaded model to be used for Inference, defaults to None :type model_path: Optional[str], optional :example >from presidio_analyzer import AnalyzerEngine, RecognizerRegistry >model_path = "obi/deid_roberta_i2b2" >transformers_recognizer = TransformersRecognizer(model_path=model_path, >supported_entities = model_configuration.get("PRESIDIO_SUPPORTED_ENTITIES")) >transformers_recognizer.load_transformer(**model_configuration) >registry = RecognizerRegistry() >registry.add_recognizer(transformers_recognizer) >analyzer = AnalyzerEngine(registry=registry) >sample = "My name is Christopher and I live in Irbid." >results = analyzer.analyze(sample, language="en",return_decision_process=True) >for result in results: > print(result,'----', sample[result.start:result.end]) """ def load(self) -> None: pass def __init__( self, model_path: Optional[str] = None, pipeline: Optional[TokenClassificationPipeline] = None, supported_entities: Optional[List[str]] = None, ): if not supported_entities: supported_entities = BERT_DEID_CONFIGURATION[ "PRESIDIO_SUPPORTED_ENTITIES" ] super().__init__( supported_entities=supported_entities, name=f"Transformers model {model_path}", ) self.model_path = model_path self.pipeline = pipeline self.is_loaded = False self.aggregation_mechanism = None self.ignore_labels = None self.model_to_presidio_mapping = None self.entity_mapping = None self.default_explanation = None self.text_overlap_length = None self.chunk_length = None def load_transformer(self, **kwargs) -> None: """Load external configuration parameters and set default values. :param kwargs: define default values for class attributes and modify pipeline behavior **DATASET_TO_PRESIDIO_MAPPING (dict) - defines mapping entity strings from dataset format to Presidio format **MODEL_TO_PRESIDIO_MAPPING (dict) - defines mapping entity strings from chosen model format to Presidio format **SUB_WORD_AGGREGATION(str) - define how to aggregate sub-word tokens into full words and spans as defined in HuggingFace https://huggingface.co/transformers/v4.8.0/main_classes/pipelines.html#transformers.TokenClassificationPipeline # noqa **CHUNK_OVERLAP_SIZE (int) - number of overlapping characters in each text chunk when splitting a single text into multiple inferences **CHUNK_SIZE (int) - number of characters in each chunk of text **LABELS_TO_IGNORE (List(str)) - List of entities to skip evaluation. Defaults to ["O"] **DEFAULT_EXPLANATION (str) - string format to use for prediction explanations """ self.entity_mapping = kwargs.get("DATASET_TO_PRESIDIO_MAPPING", {}) self.model_to_presidio_mapping = kwargs.get("MODEL_TO_PRESIDIO_MAPPING", {}) self.ignore_labels = kwargs.get("LABELS_TO_IGNORE", ["O"]) self.aggregation_mechanism = kwargs.get("SUB_WORD_AGGREGATION", "simple") self.default_explanation = kwargs.get("DEFAULT_EXPLANATION", None) self.text_overlap_length = kwargs.get("CHUNK_OVERLAP_SIZE", 40) self.chunk_length = kwargs.get("CHUNK_SIZE", 600) if not self.pipeline: if not self.model_path: self.model_path = "obi/deid_roberta_i2b2" logger.warning( f"Both 'model' and 'model_path' arguments are None. Using default model_path={self.model_path}" ) self._load_pipeline() def _load_pipeline(self) -> None: """Initialize NER transformers_rec pipeline using the model_path provided""" logging.debug(f"Initializing NER pipeline using {self.model_path} path") device = 0 if torch.cuda.is_available() else -1 self.pipeline = pipeline( "ner", model=AutoModelForTokenClassification.from_pretrained(self.model_path), tokenizer=AutoTokenizer.from_pretrained(self.model_path), # Will attempt to group sub-entities to word level aggregation_strategy=self.aggregation_mechanism, device=device, framework="pt", ignore_labels=self.ignore_labels, ) self.is_loaded = True def get_supported_entities(self) -> List[str]: """ Return supported entities by this model. :return: List of the supported entities. """ return self.supported_entities # Class to use transformers_rec with Presidio as an external recognizer. def analyze( self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None ) -> List[RecognizerResult]: """ Analyze text using transformers_rec model to produce NER tagging. :param text : The text for analysis. :param entities: Not working properly for this recognizer. :param nlp_artifacts: Not used by this recognizer. :return: The list of Presidio RecognizerResult constructed from the recognized transformers_rec detections. """ results = list() # Run transformer model on the provided text ner_results = self._get_ner_results_for_text(text) for res in ner_results: entity = self.model_to_presidio_mapping.get(res["entity_group"], None) if not entity: continue res["entity_group"] = self.__check_label_transformer(res["entity_group"]) textual_explanation = self.default_explanation.format(res["entity_group"]) explanation = self.build_transformers_explanation( float(round(res["score"], 2)), textual_explanation, res["word"] ) transformers_result = self._convert_to_recognizer_result(res, explanation) results.append(transformers_result) return results @staticmethod def split_text_to_word_chunks( input_length: int, chunk_length: int, overlap_length: int ) -> List[List]: """The function calculates chunks of text with size chunk_length. Each chunk has overlap_length number of words to create context and continuity for the model :param input_length: Length of input_ids for a given text :type input_length: int :param chunk_length: Length of each chunk of input_ids. Should match the max input length of the transformer model :type chunk_length: int :param overlap_length: Number of overlapping words in each chunk :type overlap_length: int :return: List of start and end positions for individual text chunks :rtype: List[List] """ if input_length < chunk_length: return [[0, input_length]] if chunk_length <= overlap_length: logger.warning( "overlap_length should be shorter than chunk_length, setting overlap_length to by half of chunk_length" ) overlap_length = chunk_length // 2 return [ [i, min([i + chunk_length, input_length])] for i in range( 0, input_length - overlap_length, chunk_length - overlap_length ) ] def _get_ner_results_for_text(self, text: str) -> List[dict]: """The function runs model inference on the provided text. The text is split into chunks with n overlapping characters. The results are then aggregated and duplications are removed. :param text: The text to run inference on :type text: str :return: List of entity predictions on the word level :rtype: List[dict] """ model_max_length = self.pipeline.tokenizer.model_max_length # calculate inputs based on the text text_length = len(text) # split text into chunks logger.info( f"splitting the text into chunks, length {text_length} > {model_max_length*2}" ) predictions = list() chunk_indexes = TransformersRecognizer.split_text_to_word_chunks( text_length, self.chunk_length, self.text_overlap_length ) # iterate over text chunks and run inference for chunk_start, chunk_end in chunk_indexes: chunk_text = text[chunk_start:chunk_end] chunk_preds = self.pipeline(chunk_text) # align indexes to match the original text - add to each position the value of chunk_start aligned_predictions = list() for prediction in chunk_preds: prediction_tmp = copy.deepcopy(prediction) prediction_tmp["start"] += chunk_start prediction_tmp["end"] += chunk_start aligned_predictions.append(prediction_tmp) predictions.extend(aligned_predictions) # remove duplicates predictions = [dict(t) for t in {tuple(d.items()) for d in predictions}] return predictions @staticmethod def _convert_to_recognizer_result( prediction_result: dict, explanation: AnalysisExplanation ) -> RecognizerResult: """The method parses NER model predictions into a RecognizerResult format to enable down the stream analysis :param prediction_result: A single example of entity prediction :type prediction_result: dict :param explanation: Textual representation of model prediction :type explanation: str :return: An instance of RecognizerResult which is used to model evaluation calculations :rtype: RecognizerResult """ transformers_results = RecognizerResult( entity_type=prediction_result["entity_group"], start=prediction_result["start"], end=prediction_result["end"], score=float(round(prediction_result["score"], 2)), analysis_explanation=explanation, ) return transformers_results def build_transformers_explanation( self, original_score: float, explanation: str, pattern: str, ) -> AnalysisExplanation: """ Create explanation for why this result was detected. :param original_score: Score given by this recognizer :param explanation: Explanation string :param pattern: Regex pattern used :return Structured explanation and scores of a NER model prediction :rtype: AnalysisExplanation """ explanation = AnalysisExplanation( recognizer=self.__class__.__name__, original_score=float(original_score), textual_explanation=explanation, pattern=pattern, ) return explanation def __check_label_transformer(self, label: str) -> str: """The function validates the predicted label is identified by Presidio and maps the string into a Presidio representation :param label: Predicted label by the model :type label: str :return: Returns the predicted entity if the label is found in model_to_presidio mapping dictionary and is supported by Presidio entities :rtype: str """ if label == "O": return label # convert model label to presidio label entity = self.model_to_presidio_mapping.get(label, None) if entity is None: logger.warning(f"Found unrecognized label {label}, returning entity as 'O'") return "O" if entity not in self.supported_entities: logger.warning(f"Found entity {entity} which is not supported by Presidio") return "O" return entity