pretzinger commited on
Commit
13818f9
·
1 Parent(s): 36367ab

Enhance logging in load_model function

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -22,14 +22,14 @@ def apply_custom_css():
22
  def load_model():
23
  model_path = "HuggingFaceH4/zephyr-7b-beta"
24
  peft_model_path = "yitzashapiro/FDA-guidance-zephyr-7b-beta-PEFT"
25
-
26
  try:
27
  HF_API_TOKEN = os.getenv("HF_API_TOKEN")
28
  st.write("Loading tokenizer...")
29
  tokenizer = AutoTokenizer.from_pretrained(
30
  model_path,
31
  trust_remote_code=True,
32
- use_auth_token=HF_API_TOKEN
33
  )
34
  st.write("Loading model...")
35
  model = AutoModelForCausalLM.from_pretrained(
@@ -37,7 +37,7 @@ def load_model():
37
  device_map="auto",
38
  torch_dtype=torch.float16,
39
  trust_remote_code=True,
40
- use_auth_token=HF_API_TOKEN
41
  ).eval()
42
  st.write("Loading PEFT adapter...")
43
  model.load_adapter(peft_model_path)
@@ -45,9 +45,10 @@ def load_model():
45
  except Exception as e:
46
  st.error(f"Error loading model: {e}")
47
  st.stop()
48
-
49
  return tokenizer, model
50
 
 
51
  def generate_response(tokenizer, model, user_input):
52
  messages = [
53
  {"role": "user", "content": user_input}
 
22
  def load_model():
23
  model_path = "HuggingFaceH4/zephyr-7b-beta"
24
  peft_model_path = "yitzashapiro/FDA-guidance-zephyr-7b-beta-PEFT"
25
+
26
  try:
27
  HF_API_TOKEN = os.getenv("HF_API_TOKEN")
28
  st.write("Loading tokenizer...")
29
  tokenizer = AutoTokenizer.from_pretrained(
30
  model_path,
31
  trust_remote_code=True,
32
+ use_auth_token=HF_API_TOKEN # Use token for private models
33
  )
34
  st.write("Loading model...")
35
  model = AutoModelForCausalLM.from_pretrained(
 
37
  device_map="auto",
38
  torch_dtype=torch.float16,
39
  trust_remote_code=True,
40
+ use_auth_token=HF_API_TOKEN # Use token for private models
41
  ).eval()
42
  st.write("Loading PEFT adapter...")
43
  model.load_adapter(peft_model_path)
 
45
  except Exception as e:
46
  st.error(f"Error loading model: {e}")
47
  st.stop()
48
+
49
  return tokenizer, model
50
 
51
+
52
  def generate_response(tokenizer, model, user_input):
53
  messages = [
54
  {"role": "user", "content": user_input}