Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,606 +1,166 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import spaces
|
4 |
-
torch.jit.script = lambda f: f
|
5 |
-
import timm
|
6 |
import time
|
7 |
-
|
8 |
-
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
9 |
-
from safetensors.torch import load_file
|
10 |
-
from share_btn import community_icon_html, loading_icon_html, share_js
|
11 |
-
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
12 |
-
|
13 |
-
import lora
|
14 |
-
import copy
|
15 |
import json
|
16 |
-
import
|
17 |
import random
|
18 |
-
from urllib.parse import quote
|
19 |
-
import gdown
|
20 |
-
import os
|
21 |
-
import re
|
22 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
|
|
|
|
24 |
import diffusers
|
25 |
from diffusers.utils import load_image
|
26 |
from diffusers.models import ControlNetModel
|
27 |
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, UNet2DConditionModel
|
28 |
-
import
|
29 |
-
import
|
30 |
-
import numpy as np
|
31 |
-
from PIL import Image
|
32 |
-
|
33 |
from insightface.app import FaceAnalysis
|
34 |
-
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
|
35 |
from controlnet_aux import ZoeDetector
|
36 |
-
|
37 |
from compel import Compel, ReturnedEmbeddingsType
|
38 |
-
|
39 |
from gradio_imageslider import ImageSlider
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
#
|
|
|
43 |
|
|
|
44 |
with open("sdxl_loras.json", "r") as file:
|
45 |
-
|
46 |
-
sdxl_loras_raw = [
|
47 |
-
{
|
48 |
-
"image": item["image"],
|
49 |
-
"title": item["title"],
|
50 |
-
"repo": item["repo"],
|
51 |
-
"trigger_word": item["trigger_word"],
|
52 |
-
"weights": item["weights"],
|
53 |
-
"is_compatible": item["is_compatible"],
|
54 |
-
"is_pivotal": item.get("is_pivotal", False),
|
55 |
-
"text_embedding_weights": item.get("text_embedding_weights", None),
|
56 |
-
"likes": item.get("likes", 0),
|
57 |
-
"downloads": item.get("downloads", 0),
|
58 |
-
"is_nc": item.get("is_nc", False),
|
59 |
-
"new": item.get("new", False),
|
60 |
-
}
|
61 |
-
for item in data
|
62 |
-
]
|
63 |
|
64 |
with open("defaults_data.json", "r") as file:
|
65 |
lora_defaults = json.load(file)
|
66 |
-
|
67 |
-
|
68 |
-
device = "cuda"
|
69 |
-
|
70 |
-
state_dicts = {}
|
71 |
-
|
72 |
-
for item in sdxl_loras_raw:
|
73 |
-
saved_name = hf_hub_download(item["repo"], item["weights"])
|
74 |
-
|
75 |
-
if not saved_name.endswith('.safetensors'):
|
76 |
-
state_dict = torch.load(saved_name)
|
77 |
-
else:
|
78 |
-
state_dict = load_file(saved_name)
|
79 |
-
|
80 |
-
state_dicts[item["repo"]] = {
|
81 |
-
"saved_name": saved_name,
|
82 |
-
"state_dict": state_dict
|
83 |
-
}
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
hf_hub_download(
|
89 |
-
|
90 |
-
|
91 |
-
local_dir="/data/checkpoints",
|
92 |
-
)
|
93 |
-
hf_hub_download(
|
94 |
-
repo_id="InstantX/InstantID",
|
95 |
-
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
|
96 |
-
local_dir="/data/checkpoints",
|
97 |
-
)
|
98 |
-
hf_hub_download(
|
99 |
-
repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints"
|
100 |
-
)
|
101 |
-
hf_hub_download(
|
102 |
-
repo_id="latent-consistency/lcm-lora-sdxl",
|
103 |
-
filename="pytorch_lora_weights.safetensors",
|
104 |
-
local_dir="/data/checkpoints",
|
105 |
-
)
|
106 |
-
# download antelopev2
|
107 |
-
#if not os.path.exists("/data/antelopev2.zip"):
|
108 |
-
# gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="/data/", quiet=False, fuzzy=True)
|
109 |
-
# os.system("unzip /data/antelopev2.zip -d /data/models/")
|
110 |
|
|
|
111 |
antelope_download = snapshot_download(repo_id="DIAMONIK7777/antelopev2", local_dir="/data/models/antelopev2")
|
112 |
-
print(antelope_download)
|
113 |
-
|
|
|
|
|
114 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
115 |
|
116 |
-
#
|
117 |
-
face_adapter =
|
118 |
-
controlnet_path =
|
119 |
|
120 |
-
# load IdentityNet
|
121 |
-
st = time.time()
|
122 |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
123 |
-
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16)
|
124 |
-
|
125 |
-
elapsed_time = et - st
|
126 |
-
print('Loading ControlNet took: ', elapsed_time, 'seconds')
|
127 |
-
st = time.time()
|
128 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
129 |
-
et = time.time()
|
130 |
-
elapsed_time = et - st
|
131 |
-
print('Loading VAE took: ', elapsed_time, 'seconds')
|
132 |
-
st = time.time()
|
133 |
|
134 |
-
#
|
135 |
-
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
139 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
140 |
pipe.load_ip_adapter_instantid(face_adapter)
|
141 |
pipe.set_ip_adapter_scale(0.8)
|
142 |
-
et = time.time()
|
143 |
-
elapsed_time = et - st
|
144 |
-
print('Loading pipeline took: ', elapsed_time, 'seconds')
|
145 |
-
st = time.time()
|
146 |
-
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
|
147 |
-
et = time.time()
|
148 |
-
elapsed_time = et - st
|
149 |
-
print('Loading Compel took: ', elapsed_time, 'seconds')
|
150 |
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
153 |
-
et = time.time()
|
154 |
-
elapsed_time = et - st
|
155 |
-
print('Loading Zoe took: ', elapsed_time, 'seconds')
|
156 |
zoe.to(device)
|
157 |
pipe.to(device)
|
158 |
|
|
|
159 |
last_lora = ""
|
160 |
last_fused = False
|
161 |
-
js = '''
|
162 |
-
var button = document.getElementById('button');
|
163 |
-
// Add a click event listener to the button
|
164 |
-
button.addEventListener('click', function() {
|
165 |
-
element.classList.add('selected');
|
166 |
-
});
|
167 |
-
'''
|
168 |
-
lora_archive = "/data"
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})
|
175 |
|
176 |
for lora_list in lora_defaults:
|
177 |
-
if lora_list["model"] ==
|
178 |
face_strength = lora_list.get("face_strength", 0.85)
|
179 |
image_strength = lora_list.get("image_strength", 0.15)
|
180 |
weight = lora_list.get("weight", 0.9)
|
181 |
depth_control_scale = lora_list.get("depth_control_scale", 0.8)
|
182 |
negative = lora_list.get("negative", "")
|
183 |
-
|
184 |
-
if(is_new):
|
185 |
-
if(selected_state.index == 0):
|
186 |
-
selected_state.index = -9999
|
187 |
-
else:
|
188 |
-
selected_state.index *= -1
|
189 |
-
|
190 |
return (
|
191 |
-
updated_text,
|
192 |
-
|
193 |
-
face_strength,
|
194 |
-
image_strength,
|
195 |
-
weight,
|
196 |
-
depth_control_scale,
|
197 |
-
negative,
|
198 |
-
selected_state
|
199 |
)
|
200 |
|
201 |
-
def
|
202 |
square_size = min(img.size)
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
def merge_incompatible_lora(full_path_lora, lora_scale):
|
217 |
-
for weights_file in [full_path_lora]:
|
218 |
-
if ";" in weights_file:
|
219 |
-
weights_file, multiplier = weights_file.split(";")
|
220 |
-
multiplier = float(multiplier)
|
221 |
-
else:
|
222 |
-
multiplier = lora_scale
|
223 |
-
|
224 |
-
lora_model, weights_sd = lora.create_network_from_weights(
|
225 |
-
multiplier,
|
226 |
-
full_path_lora,
|
227 |
-
pipe.vae,
|
228 |
-
pipe.text_encoder,
|
229 |
-
pipe.unet,
|
230 |
-
for_inference=True,
|
231 |
-
)
|
232 |
-
lora_model.merge_to(
|
233 |
-
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
|
234 |
-
)
|
235 |
-
del weights_sd
|
236 |
-
del lora_model
|
237 |
-
|
238 |
-
@spaces.GPU(duration=80)
|
239 |
-
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st):
|
240 |
-
print(loaded_state_dict)
|
241 |
-
et = time.time()
|
242 |
-
elapsed_time = et - st
|
243 |
-
print('Getting into the decorated function took: ', elapsed_time, 'seconds')
|
244 |
global last_fused, last_lora
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
width, height = face_kps.size
|
253 |
-
images = [face_kps, image_zoe.resize((height, width))]
|
254 |
-
et = time.time()
|
255 |
-
elapsed_time = et - st
|
256 |
-
print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
|
257 |
-
if last_lora != repo_name:
|
258 |
-
if(last_fused):
|
259 |
-
st = time.time()
|
260 |
-
pipe.unfuse_lora()
|
261 |
-
pipe.unload_lora_weights()
|
262 |
-
pipe.unload_textual_inversion()
|
263 |
-
et = time.time()
|
264 |
-
elapsed_time = et - st
|
265 |
-
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
|
266 |
-
st = time.time()
|
267 |
-
pipe.load_lora_weights(loaded_state_dict)
|
268 |
-
pipe.fuse_lora(lora_scale)
|
269 |
-
et = time.time()
|
270 |
-
elapsed_time = et - st
|
271 |
-
print('Fuse and load LoRA took: ', elapsed_time, 'seconds')
|
272 |
-
last_fused = True
|
273 |
-
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
274 |
-
if(is_pivotal):
|
275 |
-
#Add the textual inversion embeddings from pivotal tuning models
|
276 |
-
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
277 |
-
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
278 |
-
state_dict_embedding = load_file(embedding_path)
|
279 |
-
pipe.load_textual_inversion(state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
280 |
-
pipe.load_textual_inversion(state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
281 |
-
|
282 |
-
print("Processing prompt...")
|
283 |
-
st = time.time()
|
284 |
conditioning, pooled = compel(prompt)
|
285 |
-
|
286 |
-
negative_conditioning, negative_pooled = compel(negative)
|
287 |
-
else:
|
288 |
-
negative_conditioning, negative_pooled = None, None
|
289 |
-
et = time.time()
|
290 |
-
elapsed_time = et - st
|
291 |
-
print('Prompt processing took: ', elapsed_time, 'seconds')
|
292 |
-
print("Processing image...")
|
293 |
-
st = time.time()
|
294 |
-
image = pipe(
|
295 |
-
prompt_embeds=conditioning,
|
296 |
-
pooled_prompt_embeds=pooled,
|
297 |
-
negative_prompt_embeds=negative_conditioning,
|
298 |
-
negative_pooled_prompt_embeds=negative_pooled,
|
299 |
-
width=1024,
|
300 |
-
height=1024,
|
301 |
-
image_embeds=face_emb,
|
302 |
-
image=face_image,
|
303 |
-
strength=1-image_strength,
|
304 |
-
control_image=images,
|
305 |
-
num_inference_steps=20,
|
306 |
-
guidance_scale = guidance_scale,
|
307 |
-
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
308 |
-
).images[0]
|
309 |
-
et = time.time()
|
310 |
-
elapsed_time = et - st
|
311 |
-
print('Image processing took: ', elapsed_time, 'seconds')
|
312 |
-
last_lora = repo_name
|
313 |
-
return image
|
314 |
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
|
324 |
-
face_emb = face_info['embedding']
|
325 |
-
face_kps = draw_kps(face_image, face_info['kps'])
|
326 |
-
except:
|
327 |
-
raise gr.Error("No face found in your image. Only face images work here. Try again")
|
328 |
-
et = time.time()
|
329 |
-
elapsed_time = et - st
|
330 |
-
print('Cropping and calculating face embeds took: ', elapsed_time, 'seconds')
|
331 |
-
|
332 |
-
st = time.time()
|
333 |
-
|
334 |
-
if(custom_lora_path and custom_lora[1]):
|
335 |
-
prompt = f"{prompt} {custom_lora[1]}"
|
336 |
-
else:
|
337 |
-
for lora_list in lora_defaults:
|
338 |
-
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
339 |
-
prompt_full = lora_list.get("prompt", None)
|
340 |
-
if(prompt_full):
|
341 |
-
prompt = prompt_full.replace("<subject>", prompt)
|
342 |
-
|
343 |
-
print("Prompt:", prompt)
|
344 |
-
if(prompt == ""):
|
345 |
-
prompt = "a person"
|
346 |
-
print(f"Executing prompt: {prompt}")
|
347 |
-
#print("Selected State: ", selected_state_index)
|
348 |
-
#print(sdxl_loras[selected_state_index]["repo"])
|
349 |
-
if negative == "":
|
350 |
-
negative = None
|
351 |
-
print("Custom Loaded LoRA: ", custom_lora_path)
|
352 |
-
if not selected_state and not custom_lora_path:
|
353 |
-
raise gr.Error("You must select a style")
|
354 |
-
elif custom_lora_path:
|
355 |
-
repo_name = custom_lora_path
|
356 |
-
full_path_lora = custom_lora_path
|
357 |
-
else:
|
358 |
-
repo_name = sdxl_loras[selected_state_index]["repo"]
|
359 |
-
weight_name = sdxl_loras[selected_state_index]["weights"]
|
360 |
-
full_path_lora = state_dicts[repo_name]["saved_name"]
|
361 |
-
print("Full path LoRA ", full_path_lora)
|
362 |
-
#loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
363 |
-
cross_attention_kwargs = None
|
364 |
-
et = time.time()
|
365 |
-
elapsed_time = et - st
|
366 |
-
print('Small content processing took: ', elapsed_time, 'seconds')
|
367 |
-
|
368 |
-
st = time.time()
|
369 |
-
image = generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, full_path_lora, lora_scale, sdxl_loras, selected_state_index, st)
|
370 |
-
return (face_image, image), gr.update(visible=True)
|
371 |
-
|
372 |
-
run_lora.zerogpu = True
|
373 |
-
|
374 |
-
def shuffle_gallery(sdxl_loras):
|
375 |
-
random.shuffle(sdxl_loras)
|
376 |
-
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras
|
377 |
-
|
378 |
-
def classify_gallery(sdxl_loras):
|
379 |
-
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
380 |
-
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
|
381 |
-
|
382 |
-
def swap_gallery(order, sdxl_loras):
|
383 |
-
if(order == "random"):
|
384 |
-
return shuffle_gallery(sdxl_loras)
|
385 |
-
else:
|
386 |
-
return classify_gallery(sdxl_loras)
|
387 |
-
|
388 |
-
def deselect():
|
389 |
-
return gr.Gallery(selected_index=None)
|
390 |
-
|
391 |
-
def get_huggingface_safetensors(link):
|
392 |
-
split_link = link.split("/")
|
393 |
-
if(len(split_link) == 2):
|
394 |
-
model_card = ModelCard.load(link)
|
395 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
396 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
397 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
398 |
-
fs = HfFileSystem()
|
399 |
-
try:
|
400 |
-
list_of_files = fs.ls(link, detail=False)
|
401 |
-
for file in list_of_files:
|
402 |
-
if(file.endswith(".safetensors")):
|
403 |
-
safetensors_name = file.replace("/", "_")
|
404 |
-
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
|
405 |
-
fs.get_file(file, lpath=f"{lora_archive}/{safetensors_name}")
|
406 |
-
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
407 |
-
image_elements = file.split("/")
|
408 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
409 |
-
except:
|
410 |
-
gr.Warning("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
411 |
-
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
412 |
-
return split_link[1], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
413 |
-
|
414 |
-
def get_civitai_safetensors(link):
|
415 |
-
link_split = link.split("civitai.com/")
|
416 |
-
pattern = re.compile(r'models\/(\d+)')
|
417 |
-
regex_match = pattern.search(link_split[1])
|
418 |
-
if(regex_match):
|
419 |
-
civitai_model_id = regex_match.group(1)
|
420 |
-
else:
|
421 |
-
gr.Warning("No CivitAI model id found in your URL")
|
422 |
-
raise Exception("No CivitAI model id found in your URL")
|
423 |
-
model_request_url = f"https://civitai.com/api/v1/models/{civitai_model_id}?token={os.getenv('CIVITAI_TOKEN')}"
|
424 |
-
x = requests.get(model_request_url)
|
425 |
-
if(x.status_code != 200):
|
426 |
-
raise Exception("Invalid CivitAI URL")
|
427 |
-
model_data = x.json()
|
428 |
-
#if(model_data["nsfw"] == True or model_data["nsfwLevel"] > 20):
|
429 |
-
# gr.Warning("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.")
|
430 |
-
# raise Exception("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.")
|
431 |
-
if(model_data["type"] != "LORA"):
|
432 |
-
gr.Warning("The model isn't tagged at CivitAI as a LoRA")
|
433 |
-
raise Exception("The model isn't tagged at CivitAI as a LoRA")
|
434 |
-
model_link_download = None
|
435 |
-
image_url = None
|
436 |
-
trigger_word = ""
|
437 |
-
for model in model_data["modelVersions"]:
|
438 |
-
if(model["baseModel"] == "SDXL 1.0"):
|
439 |
-
model_link_download = f"{model['downloadUrl']}/?token={os.getenv('CIVITAI_TOKEN')}"
|
440 |
-
safetensors_name = model["files"][0]["name"]
|
441 |
-
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
|
442 |
-
safetensors_file_request = requests.get(model_link_download)
|
443 |
-
if(safetensors_file_request.status_code != 200):
|
444 |
-
raise Exception("Invalid CivitAI download link")
|
445 |
-
with open(f"{lora_archive}/{safetensors_name}", 'wb') as file:
|
446 |
-
file.write(safetensors_file_request.content)
|
447 |
-
trigger_word = model.get("trainedWords", [""])[0]
|
448 |
-
for image in model["images"]:
|
449 |
-
if(image["nsfwLevel"] == 1):
|
450 |
-
image_url = image["url"]
|
451 |
-
break
|
452 |
-
break
|
453 |
-
if(not model_link_download):
|
454 |
-
gr.Warning("We couldn't find a SDXL LoRA on the model you've sent")
|
455 |
-
raise Exception("We couldn't find a SDXL LoRA on the model you've sent")
|
456 |
-
return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
457 |
-
|
458 |
-
def check_custom_model(link):
|
459 |
-
if(link.startswith("https://")):
|
460 |
-
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
|
461 |
-
link_split = link.split("huggingface.co/")
|
462 |
-
return get_huggingface_safetensors(link_split[1])
|
463 |
-
elif(link.startswith("https://civitai.com") or link.startswith("https://www.civitai.com")):
|
464 |
-
return get_civitai_safetensors(link)
|
465 |
-
else:
|
466 |
-
return get_huggingface_safetensors(link)
|
467 |
-
|
468 |
-
def show_loading_widget():
|
469 |
-
return gr.update(visible=True)
|
470 |
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
<div class="card_internal">
|
479 |
-
<img src="{image}" />
|
480 |
-
<div>
|
481 |
-
<h3>{title}</h3>
|
482 |
-
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
|
483 |
-
</div>
|
484 |
-
</div>
|
485 |
-
</div>
|
486 |
-
'''
|
487 |
-
return gr.update(visible=True), card, gr.update(visible=True), [path, trigger_word], gr.Gallery(selected_index=None), f"Custom: {path}"
|
488 |
-
except Exception as e:
|
489 |
-
gr.Warning("Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content")
|
490 |
-
return gr.update(visible=True), "Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True)
|
491 |
-
else:
|
492 |
-
return gr.update(visible=False), "", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True)
|
493 |
|
494 |
-
|
495 |
-
return "", gr.update(visible=False), gr.update(visible=False), None
|
496 |
-
with gr.Blocks(css="custom.css") as demo:
|
497 |
-
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
498 |
-
title = gr.HTML(
|
499 |
-
"""<h1><img src="https://i.imgur.com/DVoGw04.png">
|
500 |
-
<span>Face to All<br><small style="
|
501 |
-
font-size: 13px;
|
502 |
-
display: block;
|
503 |
-
font-weight: normal;
|
504 |
-
opacity: 0.75;
|
505 |
-
">🧨 diffusers InstantID + ControlNet<br> inspired by fofr's <a href="https://github.com/fofr/cog-face-to-many" target="_blank">face-to-many</a></small></span></h1>""",
|
506 |
-
elem_id="title",
|
507 |
-
)
|
508 |
-
selected_state = gr.State()
|
509 |
-
custom_loaded_lora = gr.State()
|
510 |
-
with gr.Row(elem_id="main_app"):
|
511 |
-
with gr.Column(scale=4, elem_id="box_column"):
|
512 |
-
with gr.Group(elem_id="gallery_box"):
|
513 |
-
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil", height=300)
|
514 |
-
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
|
515 |
-
#order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
|
516 |
-
#new_gallery = gr.Gallery(
|
517 |
-
# label="New LoRAs",
|
518 |
-
# elem_id="gallery_new",
|
519 |
-
# columns=3,
|
520 |
-
# value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False)
|
521 |
-
gallery = gr.Gallery(
|
522 |
-
#value=[(item["image"], item["title"]) for item in sdxl_loras],
|
523 |
-
label="Pick a style from the gallery",
|
524 |
-
allow_preview=False,
|
525 |
-
columns=4,
|
526 |
-
elem_id="gallery",
|
527 |
-
show_share_button=False,
|
528 |
-
height=550
|
529 |
-
)
|
530 |
-
custom_model = gr.Textbox(label="or enter a custom Hugging Face or CivitAI SDXL LoRA", placeholder="Paste Hugging Face or CivitAI model path...")
|
531 |
-
custom_model_card = gr.HTML(visible=False)
|
532 |
-
custom_model_button = gr.Button("Remove custom LoRA", visible=False)
|
533 |
-
with gr.Column(scale=5):
|
534 |
-
with gr.Row():
|
535 |
-
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, info="Describe your subject (optional)", value="a person", elem_id="prompt")
|
536 |
-
button = gr.Button("Run", elem_id="run_button")
|
537 |
-
result = ImageSlider(
|
538 |
-
interactive=False, label="Generated Image", elem_id="result-image", position=0.1
|
539 |
-
)
|
540 |
-
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
541 |
-
community_icon = gr.HTML(community_icon_html)
|
542 |
-
loading_icon = gr.HTML(loading_icon_html)
|
543 |
-
share_button = gr.Button("Share to community", elem_id="share-btn")
|
544 |
-
with gr.Accordion("Advanced options", open=False):
|
545 |
-
negative = gr.Textbox(label="Negative Prompt")
|
546 |
-
weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight")
|
547 |
-
face_strength = gr.Slider(0, 2, value=0.85, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models")
|
548 |
-
image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo")
|
549 |
-
guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale")
|
550 |
-
depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strenght")
|
551 |
-
prompt_title = gr.Markdown(
|
552 |
-
value="### Click on a LoRA in the gallery to select it",
|
553 |
-
visible=True,
|
554 |
-
elem_id="selected_lora",
|
555 |
-
)
|
556 |
-
#order_gallery.change(
|
557 |
-
# fn=swap_gallery,
|
558 |
-
# inputs=[order_gallery, gr_sdxl_loras],
|
559 |
-
# outputs=[gallery, gr_sdxl_loras],
|
560 |
-
# queue=False
|
561 |
-
#)
|
562 |
-
custom_model.input(
|
563 |
-
fn=load_custom_lora,
|
564 |
-
inputs=[custom_model],
|
565 |
-
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title],
|
566 |
-
)
|
567 |
-
custom_model_button.click(
|
568 |
-
fn=remove_custom_lora,
|
569 |
-
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora]
|
570 |
-
)
|
571 |
-
gallery.select(
|
572 |
-
fn=update_selection,
|
573 |
-
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
|
574 |
-
outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
|
575 |
-
show_progress=False
|
576 |
-
)
|
577 |
-
#new_gallery.select(
|
578 |
-
# fn=update_selection,
|
579 |
-
# inputs=[gr_sdxl_loras_new, gr.State(True)],
|
580 |
-
# outputs=[prompt_title, prompt, prompt, selected_state, gallery],
|
581 |
-
# queue=False,
|
582 |
-
# show_progress=False
|
583 |
-
#)
|
584 |
-
prompt.submit(
|
585 |
-
fn=check_selected,
|
586 |
-
inputs=[selected_state, custom_loaded_lora],
|
587 |
-
show_progress=False
|
588 |
-
).success(
|
589 |
-
fn=run_lora,
|
590 |
-
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
591 |
-
outputs=[result, share_group],
|
592 |
-
)
|
593 |
-
button.click(
|
594 |
-
fn=check_selected,
|
595 |
-
inputs=[selected_state, custom_loaded_lora],
|
596 |
-
show_progress=False
|
597 |
-
).success(
|
598 |
-
fn=run_lora,
|
599 |
-
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
600 |
-
outputs=[result, share_group],
|
601 |
-
)
|
602 |
-
share_button.click(None, [], [], js=share_js)
|
603 |
-
demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], js=js)
|
604 |
|
605 |
-
demo.queue(
|
606 |
-
demo.launch(share=True)
|
|
|
1 |
+
import os
|
2 |
+
import re
|
|
|
|
|
|
|
3 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import json
|
5 |
+
import copy
|
6 |
import random
|
|
|
|
|
|
|
|
|
7 |
import requests
|
8 |
+
import torch
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
import gradio as gr
|
12 |
+
import spaces
|
13 |
+
from PIL import Image
|
14 |
+
from urllib.parse import quote
|
15 |
+
|
16 |
+
# Disable Torch JIT compilation for compatibility
|
17 |
+
torch.jit.script = lambda f: f
|
18 |
|
19 |
+
# Model & Utilities
|
20 |
+
import timm
|
21 |
import diffusers
|
22 |
from diffusers.utils import load_image
|
23 |
from diffusers.models import ControlNetModel
|
24 |
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, UNet2DConditionModel
|
25 |
+
from safetensors.torch import load_file
|
26 |
+
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
|
|
|
|
|
|
27 |
from insightface.app import FaceAnalysis
|
|
|
28 |
from controlnet_aux import ZoeDetector
|
|
|
29 |
from compel import Compel, ReturnedEmbeddingsType
|
|
|
30 |
from gradio_imageslider import ImageSlider
|
31 |
|
32 |
+
# Custom imports
|
33 |
+
try:
|
34 |
+
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
|
35 |
+
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
36 |
+
except ImportError as e:
|
37 |
+
print(f"Import Error: {e}. Check if modules exist or paths are correct.")
|
38 |
+
exit()
|
39 |
|
40 |
+
# Device setup
|
41 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
42 |
|
43 |
+
# Load LoRA configuration
|
44 |
with open("sdxl_loras.json", "r") as file:
|
45 |
+
sdxl_loras_raw = json.load(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
with open("defaults_data.json", "r") as file:
|
48 |
lora_defaults = json.load(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Download required models
|
51 |
+
CHECKPOINT_DIR = "/data/checkpoints"
|
52 |
+
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir=CHECKPOINT_DIR)
|
53 |
+
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir=CHECKPOINT_DIR)
|
54 |
+
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir=CHECKPOINT_DIR)
|
55 |
+
hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir=CHECKPOINT_DIR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Download Antelopev2 Face Recognition model
|
58 |
antelope_download = snapshot_download(repo_id="DIAMONIK7777/antelopev2", local_dir="/data/models/antelopev2")
|
59 |
+
print("Antelopev2 Download Path:", antelope_download)
|
60 |
+
|
61 |
+
# Initialize FaceAnalysis
|
62 |
+
app = FaceAnalysis(name="antelopev2", root="/data", providers=["CPUExecutionProvider"])
|
63 |
app.prepare(ctx_id=0, det_size=(640, 640))
|
64 |
|
65 |
+
# Load identity & depth models
|
66 |
+
face_adapter = os.path.join(CHECKPOINT_DIR, "ip-adapter.bin")
|
67 |
+
controlnet_path = os.path.join(CHECKPOINT_DIR, "ControlNetModel")
|
68 |
|
|
|
|
|
69 |
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
70 |
+
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0", torch_dtype=torch.float16)
|
71 |
+
|
|
|
|
|
|
|
72 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Load main pipeline
|
75 |
+
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
76 |
+
"frankjoshua/albedobaseXL_v21",
|
77 |
+
vae=vae,
|
78 |
+
controlnet=[identitynet, zoedepthnet],
|
79 |
+
torch_dtype=torch.float16
|
80 |
+
)
|
81 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
82 |
pipe.load_ip_adapter_instantid(face_adapter)
|
83 |
pipe.set_ip_adapter_scale(0.8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# Initialize Compel for text conditioning
|
86 |
+
compel = Compel(
|
87 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
88 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
89 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
90 |
+
requires_pooled=[False, True]
|
91 |
+
)
|
92 |
+
|
93 |
+
# Load ZoeDetector for depth estimation
|
94 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
|
|
|
|
|
|
95 |
zoe.to(device)
|
96 |
pipe.to(device)
|
97 |
|
98 |
+
# LoRA Management
|
99 |
last_lora = ""
|
100 |
last_fused = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
# --- Utility Functions ---
|
103 |
+
def update_selection(selected_state, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative):
|
104 |
+
index = selected_state.index
|
105 |
+
lora_repo = sdxl_loras[index]["repo"]
|
106 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
|
107 |
|
108 |
for lora_list in lora_defaults:
|
109 |
+
if lora_list["model"] == lora_repo:
|
110 |
face_strength = lora_list.get("face_strength", 0.85)
|
111 |
image_strength = lora_list.get("image_strength", 0.15)
|
112 |
weight = lora_list.get("weight", 0.9)
|
113 |
depth_control_scale = lora_list.get("depth_control_scale", 0.8)
|
114 |
negative = lora_list.get("negative", "")
|
115 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
return (
|
117 |
+
updated_text, gr.update(placeholder="Type a prompt"), face_strength,
|
118 |
+
image_strength, weight, depth_control_scale, negative, selected_state
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
)
|
120 |
|
121 |
+
def center_crop_image(img):
|
122 |
square_size = min(img.size)
|
123 |
+
left = (img.width - square_size) // 2
|
124 |
+
top = (img.height - square_size) // 2
|
125 |
+
return img.crop((left, top, left + square_size, top + square_size))
|
126 |
+
|
127 |
+
def process_face(image):
|
128 |
+
face_info = app.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
|
129 |
+
face_info = sorted(face_info, key=lambda x: (x['bbox'][2]-x['bbox'][0]) * (x['bbox'][3]-x['bbox'][1]))[-1]
|
130 |
+
face_emb = face_info['embedding']
|
131 |
+
face_kps = draw_kps(image, face_info['kps'])
|
132 |
+
return face_emb, face_kps
|
133 |
+
|
134 |
+
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, lora_scale):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
global last_fused, last_lora
|
136 |
+
if last_lora != repo_name and last_fused:
|
137 |
+
pipe.unfuse_lora()
|
138 |
+
pipe.unload_lora_weights()
|
139 |
+
pipe.load_lora_weights(repo_name)
|
140 |
+
pipe.fuse_lora(lora_scale)
|
141 |
+
last_lora, last_fused = repo_name, True
|
142 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
conditioning, pooled = compel(prompt)
|
144 |
+
negative_conditioning, negative_pooled = compel(negative) if negative else (None, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
images = [face_kps, zoe(face_image).resize(face_kps.size)]
|
147 |
+
return pipe(
|
148 |
+
prompt_embeds=conditioning, pooled_prompt_embeds=pooled,
|
149 |
+
negative_prompt_embeds=negative_conditioning, negative_pooled_prompt_embeds=negative_pooled,
|
150 |
+
width=1024, height=1024, image_embeds=face_emb, image=face_image,
|
151 |
+
strength=1-image_strength, control_image=images, num_inference_steps=20,
|
152 |
+
guidance_scale=guidance_scale, controlnet_conditioning_scale=[face_strength, depth_control_scale]
|
153 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
# --- UI Setup ---
|
156 |
+
with gr.Blocks() as demo:
|
157 |
+
photo = gr.Image(label="Upload a picture", interactive=True, type="pil", height=300)
|
158 |
+
gallery = gr.Gallery(label="Pick a style", allow_preview=False, columns=4, height=550)
|
159 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter prompt...")
|
160 |
+
button = gr.Button("Run")
|
161 |
+
result = ImageSlider(interactive=False, label="Generated Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
button.click(fn=generate_image, inputs=[prompt, gr.State(), gr.State()], outputs=result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
demo.queue()
|
166 |
+
demo.launch(share=True)
|