|
import gradio as gr
|
|
import requests
|
|
from PIL import Image
|
|
from transformers import BlipProcessor, BlipForConditionalGeneration
|
|
import time
|
|
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
|
|
|
def caption(img, min_len, max_len):
|
|
raw_image = Image.open(img).convert('RGB')
|
|
|
|
inputs = processor(raw_image, return_tensors="pt")
|
|
|
|
out = model.generate(**inputs, min_length=min_len, max_length=max_len)
|
|
return processor.decode(out[0], skip_special_tokens=True)
|
|
|
|
def greet(img, min_len, max_len):
|
|
start = time.time()
|
|
result = caption(img, min_len, max_len)
|
|
end = time.time()
|
|
total_time = str(end - start)
|
|
result = result + '\n' + total_time + ' seconds'
|
|
return result
|
|
|
|
iface = gr.Interface(fn=greet,
|
|
title='',
|
|
description=" ",
|
|
inputs=[gr.Image(type='filepath', label='Image'), gr.Slider(label='Minimum Length', minimum=1, maximum=1000, value=30), gr.Slider(label='Maximum Length', minimum=1, maximum=1000, value=100)],
|
|
outputs=gr.Textbox(label='Caption'),
|
|
theme = gr.themes.Base(primary_hue="teal",secondary_hue="teal",neutral_hue="slate"),)
|
|
iface.launch() |