EDGE-TTS / app.py
prithivMLmods's picture
Update app.py
52ae730 verified
raw
history blame
2.05 kB
import os
import re
import gradio as gr
import edge_tts
import asyncio
import time
import tempfile
from huggingface_hub import InferenceClient
css= '''
#important{
display: none;
}
'''
DESCRIPTION = """## EDGE TTS
"""
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions = "[INST] Answers by πŸ”‰, Keep conversation very short, clear, friendly and concise."
async def generate(prompt):
generate_kwargs = dict(
temperature=0.6,
max_new_tokens=256,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
seed=42,
)
formatted_prompt = system_instructions + prompt + "[/INST]"
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
communicate = edge_tts.Communicate(output)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
user_input = gr.Textbox(label="Prompt")
input_text = gr.Textbox(label="Input Text", elem_id="important")
output_audio = gr.Audio(label="Audio", type="filepath",
interactive=False,
autoplay=True,
elem_classes="audio")
with gr.Row():
translate_btn = gr.Button("Response")
translate_btn.click(fn=generate, inputs=user_input,
outputs=output_audio, api_name="translate")
# Add examples
gr.Examples(
examples=[
["What is AI?"],
["Add 2*3345"],
["Describe Mt. Everest"]
],
inputs=user_input,
outputs=output_audio,
fn=generate,
cache_examples=True
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()