import os import re import gradio as gr import edge_tts import asyncio import time import tempfile from huggingface_hub import InferenceClient css= ''' #important{ display: none; } ''' DESCRIPTION = """## EDGE TTS """ client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") system_instructions = "[INST] Answers by 🔉, Keep conversation very short, clear, friendly and concise." async def generate(prompt): generate_kwargs = dict( temperature=0.6, max_new_tokens=256, top_p=0.95, repetition_penalty=1, do_sample=True, seed=42, ) formatted_prompt = system_instructions + prompt + "[/INST]" stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text communicate = edge_tts.Communicate(output) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) yield tmp_path with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Row(): user_input = gr.Textbox(label="Prompt") input_text = gr.Textbox(label="Input Text", elem_id="important") output_audio = gr.Audio(label="Audio", type="filepath", interactive=False, autoplay=True, elem_classes="audio") with gr.Row(): translate_btn = gr.Button("Response") translate_btn.click(fn=generate, inputs=user_input, outputs=output_audio, api_name="translate") # Add examples gr.Examples( examples=[ ["What is AI?"], ["Add 2*3345"], ["Describe Mt. Everest"] ], inputs=user_input, outputs=output_audio, fn=generate, cache_examples=True ) if __name__ == "__main__": demo.queue(max_size=20).launch()