File size: 6,961 Bytes
ee317af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e018f6
6ae9433
 
5e018f6
ee317af
49393d8
ee317af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d30a852
ee317af
 
 
 
 
 
 
 
307f2c5
 
 
 
3ff4ec3
ee317af
 
 
240b4ba
ee317af
 
 
 
 
 
d5481b2
73538e5
240b4ba
 
 
 
 
 
 
ee317af
240b4ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee317af
240b4ba
 
 
 
 
 
 
 
 
ee317af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc7f40f
ee317af
be53c9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
import uuid
from typing import Tuple
import numpy as np

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max

if not torch.cuda.is_available():
    DESCRIPTIONz += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"

base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)

lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism"  # Leave trigger_word blank if not used.

pipe.load_lora_weights(lora_repo)
pipe.to("cuda")

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
    },
]

styles = {k["name"]: k["prompt"] for k in style_list}

DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str) -> str:
    return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)

@spaces.GPU(duration=60, enable_queue=True)
def generate(
    prompt: str,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))

    positive_prompt = apply_style(style_name, prompt)
    
    if trigger_word:
        positive_prompt = f"{trigger_word} {positive_prompt}"

    images = pipe(
        prompt=positive_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=28,
        num_images_per_prompt=1,
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed

examples = [
    
    "Woman in a red jacket, snowy, in the style of hyper-realistic portraiture, caninecore, mountainous vistas, timeless beauty, palewave, iconic, distinctive noses --ar 72:101 --stylize 750 --v 6",
    "Super Realism, Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
    "Super Realism, High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250",
    "Super-realism, Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights. The womans eyes are closed, her lips are slightly parted, as if she is looking up at the sky. Her hair is cascading over her shoulders, framing her face. She is wearing a sleeveless bra, adorned with tiny white dots, and a gold chain necklace around her neck. Her left earrings are dangling from her ears, adding a pop of color to the scene."
]

css = '''
.gradio-container{max-width: 888px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Generate as ( 768 x 1024 )🤗", scale=0)
            
            with gr.Accordion("Advanced options", open=True, visible=True):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                    visible=True
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                
                with gr.Row(visible=True):
                    width = gr.Slider(
                        label="Width",
                        minimum=512,
                        maximum=2048,
                        step=64,
                        value=768,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=512,
                        maximum=2048,
                        step=64,
                        value=1024,
                    )
                
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.1,
                        maximum=20.0,
                        step=0.1,
                        value=3.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=40,
                        step=1,
                        value=28,
                    )

                style_selection = gr.Radio(
                    show_label=True,
                    container=True,
                    interactive=True,
                    choices=STYLE_NAMES,
                    value=DEFAULT_STYLE_NAME,
                    label="Quality Style",
                )
        
        with gr.Column(scale=2):
            result = gr.Gallery(label="Result", columns=1, show_label=False)
            
            gr.Examples(
                examples=examples,
                inputs=prompt,
                outputs=[result, seed],
                fn=generate,
                cache_examples=False,
            )

    gr.on(
        triggers=[
            prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            style_selection,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=40).launch()