File size: 8,102 Bytes
ee317af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be53c9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
import uuid
from typing import Tuple
import numpy as np

DESCRIPTIONz = """## FLUX REALPIX 🔥"""

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max

if not torch.cuda.is_available():
    DESCRIPTIONz += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"

base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)

lora_repo = "prithivMLmods/Canopus-LoRA-Flux-FaceRealism"
trigger_word = "realism"  # Leave trigger_word blank if not used.
pipe.load_lora_weights(lora_repo)

pipe.to("cuda")

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
    },
]

styles = {k["name"]: k["prompt"] for k in style_list}

DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str) -> str:
    return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)

@spaces.GPU(duration=60, enable_queue=True)
def generate(
    prompt: str,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))

    positive_prompt = apply_style(style_name, prompt)
    
    if trigger_word:
        positive_prompt = f"{trigger_word} {positive_prompt}"

    images = pipe(
        prompt=positive_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=16,
        num_images_per_prompt=1,
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed


def load_predefined_images():
    predefined_images = [
        "assets/11.png",
        "assets/22.png",
        "assets/33.png",
        "assets/44.png",
        "assets/55.webp",
        "assets/66.png",
        "assets/77.png",
        "assets/88.png",
        "assets/99.png",
    ]
    return predefined_images



examples = [
    "A portrait of an attractive woman in her late twenties with light brown hair and purple, wearing large a yellow sweater. She is looking directly at the camera, standing outdoors near trees.. --ar 128:85 --v 6.0 --style raw",
    "A photo of the model wearing a white bodysuit and beige trench coat, posing in front of a train station with hands on head, soft light, sunset, fashion photography, high resolution, 35mm lens, f/22, natural lighting, global illumination. --ar 85:128 --v 6.0 --style raw",
]


css = '''
.gradio-container{max-width: 575px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
@keyframes snow-fall {
    0% { top: -10px; }
    100% { top: 100%; }
}

.snowflake {
    position: fixed;
    top: -10px;
    width: 10px;
    height: 10px;
    background: #00f;
    border-radius: 50%;
    opacity: 0.8;
    pointer-events: none;
    animation: snow-fall linear infinite;
}

.snowfall {
    position: fixed;
    top: 0;
    left: 0;
    width: 100%;
    height: 100%;
    pointer-events: none;
}

'''

# Add this JavaScript to generate snowfall effect
javascript = """
function createSnowflakes() {
    const snowflakeCount = 50;
    const snowfallContainer = document.createElement('div');
    snowfallContainer.classList.add('snowfall');
    document.body.appendChild(snowfallContainer);
    
    for (let i = 0; i < snowflakeCount; i++) {
        const snowflake = document.createElement('div');
        snowflake.classList.add('snowflake');
        snowflake.style.left = `${Math.random() * 100}%`;
        snowflake.style.animationDuration = `${Math.random() * 3 + 2}s`;
        snowflake.style.animationDelay = `${Math.random() * 2}s`;
        snowfallContainer.appendChild(snowflake);
    }
}

document.addEventListener('DOMContentLoaded', createSnowflakes);
"""

with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(DESCRIPTIONz)  
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt with realism tag!",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
    
    with gr.Accordion("Advanced options", open=False, visible=True):
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=64,
                value=1024,
            )
        
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20.0,
                step=0.1,
                value=3.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=40,
                step=1,
                value=16,
            )

        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Quality Style",
        )



    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            style_selection,
        ],
        outputs=[result, seed],
        api_name="run",
    )
    
    gr.Markdown("### Generated Images")
    predefined_gallery = gr.Gallery(label="Generated Images", columns=3, show_label=False, value=load_predefined_images())
    gr.Markdown("**Disclaimer/Note:**")
    
    gr.Markdown("🔥This space provides realistic image generation, which works better for human faces and portraits. Realistic trigger works properly, better for photorealistic trigger words, close-up shots, face diffusion, male, female characters.")
   
    gr.Markdown("🔥users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")

    # Include the JavaScript for snowfall effect
    gr.HTML(f"<script>{javascript}</script>")

if __name__ == "__main__":
    demo.queue(max_size=40).launch()