FLUX-REALISM / app.py
prithivMLmods's picture
Update app.py
8e870ac verified
raw
history blame
7.13 kB
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
import uuid
from typing import Tuple
import numpy as np
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
if not torch.cuda.is_available():
DESCRIPTIONz += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism" # Leave trigger_word blank if not used.
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
},
]
styles = {k["name"]: k["prompt"] for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str) -> str:
return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)
@spaces.GPU(duration=60, enable_queue=True)
def generate(
prompt: str,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
positive_prompt = apply_style(style_name, prompt)
if trigger_word:
positive_prompt = f"{trigger_word} {positive_prompt}"
images = pipe(
prompt=positive_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=28,
num_images_per_prompt=1,
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
"Super Realism, High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250",
"Woman in a red jacket, snowy, in the style of hyper-realistic portraiture, caninecore, mountainous vistas, timeless beauty, palewave, iconic, distinctive noses --ar 72:101 --stylize 750 --v 6",
"Super Realism, Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
"Super-realism, Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights. The womans eyes are closed, her lips are slightly parted, as if she is looking up at the sky. Her hair is cascading over her shoulders, framing her face. She is wearing a sleeveless top, adorned with tiny white dots, and a gold chain necklace around her neck. Her left earrings are dangling from her ears, adding a pop of color to the scene."
]
css = '''
.gradio-container{max-width: 888px !important}
h1{text-align:center}
footer {
visibility: hidden
}
.submit-btn {
background-color: #e34949 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #ff3b3b !important;
}
'''
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate as ( 768 x 1024 )🤗", scale=0, elem_classes="submit-btn")
with gr.Accordion("Advanced options", open=True, visible=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=64,
value=768,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=40,
step=1,
value=28,
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Column(scale=2):
result = gr.Gallery(label="Result", columns=1, show_label=False)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=False,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
style_selection,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=40).launch()