|
import os |
|
import random |
|
import uuid |
|
from typing import Tuple |
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler |
|
|
|
DESCRIPTIONz= """## LoRA SD 🙀 |
|
""" |
|
|
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTIONz += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>" |
|
|
|
USE_TORCH_COMPILE = 0 |
|
ENABLE_CPU_OFFLOAD = 0 |
|
|
|
if torch.cuda.is_available(): |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"SG161222/RealVisXL_V4.0_Lightning", |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
LORA_OPTIONS = { |
|
"Realism": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"), |
|
"PIXAR": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"), |
|
"PhotoShoot": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"), |
|
"Interior Architecture": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"), |
|
"Fashion Product": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"), |
|
} |
|
|
|
for model_name, weight_name, adapter_name in LORA_OPTIONS.values(): |
|
pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name) |
|
pipe.to("cuda") |
|
|
|
style_list = [ |
|
{ |
|
"name": "3840 x 2160", |
|
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "2560 x 1440", |
|
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "HD+", |
|
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", |
|
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Style Zero", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
|
|
DEFAULT_STYLE_NAME = "3840 x 2160" |
|
STYLE_NAMES = list(styles.keys()) |
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: |
|
if style_name in styles: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
else: |
|
p, n = styles[DEFAULT_STYLE_NAME] |
|
|
|
if not negative: |
|
negative = "" |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
@spaces.GPU(duration=60, enable_queue=True) |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 3, |
|
randomize_seed: bool = False, |
|
style_name: str = DEFAULT_STYLE_NAME, |
|
lora_model: str = "Realism", |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
|
|
positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt) |
|
|
|
if not use_negative_prompt: |
|
effective_negative_prompt = "" |
|
|
|
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model] |
|
pipe.set_adapters(adapter_name) |
|
|
|
images = pipe( |
|
prompt=positive_prompt, |
|
negative_prompt=effective_negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=20, |
|
num_images_per_prompt=1, |
|
cross_attention_kwargs={"scale": 0.65}, |
|
output_type="pil", |
|
).images |
|
image_paths = [save_image(img) for img in images] |
|
return image_paths, seed |
|
|
|
examples = [ |
|
"A man in ski mask, in the style of smokey background, androgynous, imaginative prison scenes, light indigo and black, close-up, michelangelo, street-savvy --ar 125:187 --v 5.1 --style raw", |
|
"Photography, front view, dynamic range, female model, upper-body, black T-shirt, dark khaki cargo pants, urban backdrop, dusk, dramatic sunlights, bokeh, cityscape, photorealism, natural, UHD --ar 9:16 --stylize 300" |
|
] |
|
|
|
css = ''' |
|
.gradio-container{max-width: 545px !important} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
''' |
|
|
|
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: |
|
gr.Markdown(DESCRIPTIONz) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt with realism tag!", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False) |
|
|
|
with gr.Accordion("Advanced options", open=False, visible=False): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
lines=4, |
|
max_lines=6, |
|
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", |
|
placeholder="Enter a negative prompt", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
visible=True |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(visible=True): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=512, |
|
maximum=2048, |
|
step=8, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=512, |
|
maximum=2048, |
|
step=8, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=20.0, |
|
step=0.1, |
|
value=3.0, |
|
) |
|
|
|
style_selection = gr.Radio( |
|
show_label=True, |
|
container=True, |
|
interactive=True, |
|
choices=STYLE_NAMES, |
|
value=DEFAULT_STYLE_NAME, |
|
label="Quality Style", |
|
) |
|
|
|
with gr.Row(visible=True): |
|
model_choice = gr.Dropdown( |
|
label="LoRA Selection", |
|
choices=list(LORA_OPTIONS.keys()), |
|
value="Realism" |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result, seed], |
|
fn=generate, |
|
cache_examples=False, |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
randomize_seed, |
|
style_selection, |
|
model_choice, |
|
], |
|
outputs=[result, seed], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=30).launch() |