Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
import os | |
import sys | |
# single thread doubles cuda performance - needs to be set before torch import | |
if any(arg.startswith('--execution-provider') for arg in sys.argv): | |
os.environ['OMP_NUM_THREADS'] = '1' | |
# reduce tensorflow log level | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
import warnings | |
from typing import List | |
import platform | |
import signal | |
import shutil | |
import argparse | |
import torch | |
import onnxruntime | |
import tensorflow | |
import roop.globals | |
import roop.metadata | |
import roop.ui as ui | |
from roop.predicter import predict_image, predict_video | |
from roop.processors.frame.core import get_frame_processors_modules | |
from roop.utilities import has_image_extension, is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clean_temp, normalize_output_path | |
if 'ROCMExecutionProvider' in roop.globals.execution_providers: | |
del torch | |
warnings.filterwarnings('ignore', category=FutureWarning, module='insightface') | |
warnings.filterwarnings('ignore', category=UserWarning, module='torchvision') | |
def parse_args() -> None: | |
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy()) | |
program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100)) | |
program.add_argument('-s', '--source', help='select an source image', dest='source_path') | |
program.add_argument('-t', '--target', help='select an target image or video', dest='target_path') | |
program.add_argument('-o', '--output', help='select output file or directory', dest='output_path') | |
program.add_argument('--frame-processor', help='frame processors (choices: face_swapper, face_enhancer, ...)', dest='frame_processor', default=['face_swapper'], nargs='+') | |
program.add_argument('--keep-fps', help='keep original fps', dest='keep_fps', action='store_true', default=False) | |
program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True) | |
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=False) | |
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False) | |
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9']) | |
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]') | |
program.add_argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory()) | |
program.add_argument('--execution-provider', help='available execution provider (choices: cpu, ...)', dest='execution_provider', default=['cpu'], choices=suggest_execution_providers(), nargs='+') | |
program.add_argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads()) | |
program.add_argument('-v', '--version', action='version', version=f'{roop.metadata.name} {roop.metadata.version}') | |
args = program.parse_args() | |
roop.globals.source_path = args.source_path | |
roop.globals.target_path = args.target_path | |
roop.globals.output_path = normalize_output_path(roop.globals.source_path, roop.globals.target_path, args.output_path) | |
roop.globals.frame_processors = args.frame_processor | |
roop.globals.headless = args.source_path or args.target_path or args.output_path | |
roop.globals.keep_fps = args.keep_fps | |
roop.globals.keep_audio = args.keep_audio | |
roop.globals.keep_frames = args.keep_frames | |
roop.globals.many_faces = args.many_faces | |
roop.globals.video_encoder = args.video_encoder | |
roop.globals.video_quality = args.video_quality | |
roop.globals.max_memory = args.max_memory | |
roop.globals.execution_providers = decode_execution_providers(args.execution_provider) | |
roop.globals.execution_threads = args.execution_threads | |
def encode_execution_providers(execution_providers: List[str]) -> List[str]: | |
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers] | |
def decode_execution_providers(execution_providers: List[str]) -> List[str]: | |
return [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers())) | |
if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)] | |
def suggest_max_memory() -> int: | |
if platform.system().lower() == 'darwin': | |
return 10 | |
return 14 | |
def suggest_execution_providers() -> List[str]: | |
return encode_execution_providers(onnxruntime.get_available_providers()) | |
def suggest_execution_threads() -> int: | |
if 'DmlExecutionProvider' in roop.globals.execution_providers: | |
return 1 | |
if 'ROCMExecutionProvider' in roop.globals.execution_providers: | |
return 1 | |
return 8 | |
def limit_resources() -> None: | |
# prevent tensorflow memory leak | |
gpus = tensorflow.config.experimental.list_physical_devices('GPU') | |
for gpu in gpus: | |
tensorflow.config.experimental.set_virtual_device_configuration(gpu, [ | |
tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=1024) | |
]) | |
# limit memory usage | |
if roop.globals.max_memory: | |
memory = roop.globals.max_memory * 1024 ** 3 | |
if platform.system().lower() == 'darwin': | |
memory = roop.globals.max_memory * 1024 ** 6 | |
if platform.system().lower() == 'windows': | |
import ctypes | |
kernel32 = ctypes.windll.kernel32 | |
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory)) | |
else: | |
import resource | |
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory)) | |
def release_resources() -> None: | |
if 'CUDAExecutionProvider' in roop.globals.execution_providers: | |
torch.cuda.empty_cache() | |
def pre_check() -> bool: | |
if sys.version_info < (3, 9): | |
update_status('Python version is not supported - please upgrade to 3.9 or higher.') | |
return False | |
if not shutil.which('ffmpeg'): | |
update_status('ffmpeg is not installed.') | |
return False | |
return True | |
def update_status(message: str, scope: str = 'ROOP.CORE') -> None: | |
print(f'[{scope}] {message}') | |
if not roop.globals.headless: | |
ui.update_status(message) | |
def start() -> None: | |
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): | |
if not frame_processor.pre_start(): | |
return | |
# process image to image | |
if has_image_extension(roop.globals.target_path): | |
if predict_image(roop.globals.target_path): | |
destroy() | |
shutil.copy2(roop.globals.target_path, roop.globals.output_path) | |
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): | |
update_status('Progressing...', frame_processor.NAME) | |
frame_processor.process_image(roop.globals.source_path, roop.globals.output_path, roop.globals.output_path) | |
frame_processor.post_process() | |
release_resources() | |
if is_image(roop.globals.target_path): | |
update_status('Processing to image succeed!') | |
else: | |
update_status('Processing to image failed!') | |
return | |
# process image to videos | |
if predict_video(roop.globals.target_path): | |
destroy() | |
update_status('Creating temp resources...') | |
create_temp(roop.globals.target_path) | |
update_status('Extracting frames...') | |
extract_frames(roop.globals.target_path) | |
temp_frame_paths = get_temp_frame_paths(roop.globals.target_path) | |
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): | |
update_status('Progressing...', frame_processor.NAME) | |
frame_processor.process_video(roop.globals.source_path, temp_frame_paths) | |
frame_processor.post_process() | |
release_resources() | |
# handles fps | |
if roop.globals.keep_fps: | |
update_status('Detecting fps...') | |
fps = detect_fps(roop.globals.target_path) | |
update_status(f'Creating video with {fps} fps...') | |
create_video(roop.globals.target_path, fps) | |
else: | |
update_status('Creating video with 30.0 fps...') | |
create_video(roop.globals.target_path) | |
# handle audio | |
if roop.globals.keep_audio: | |
if roop.globals.keep_fps: | |
update_status('Restoring audio...') | |
else: | |
update_status('Restoring audio might cause issues as fps are not kept...') | |
restore_audio(roop.globals.target_path, roop.globals.output_path) | |
else: | |
move_temp(roop.globals.target_path, roop.globals.output_path) | |
# clean and validate | |
clean_temp(roop.globals.target_path) | |
if is_video(roop.globals.target_path): | |
update_status('Processing to video succeed!') | |
else: | |
update_status('Processing to video failed!') | |
def destroy() -> None: | |
if roop.globals.target_path: | |
clean_temp(roop.globals.target_path) | |
quit() | |
def run() -> None: | |
parse_args() | |
if not pre_check(): | |
return | |
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): | |
if not frame_processor.pre_check(): | |
return | |
limit_resources() | |
if roop.globals.headless: | |
start() | |
else: | |
window = ui.init(start, destroy) | |
window.mainloop() | |