Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, pipeline | |
from diffusers import DiffusionPipeline | |
import random | |
import numpy as np | |
import os | |
from qwen_vl_utils import process_vision_info | |
# Initialize models | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.bfloat16 | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
# FLUX.1-dev model | |
pipe = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token | |
).to(device) | |
# Initialize Qwen2VL model | |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"prithivMLmods/JSONify-Flux", trust_remote_code=True, torch_dtype=torch.float16 | |
).to(device).eval() | |
qwen_processor = AutoProcessor.from_pretrained("prithivMLmods/JSONify-Flux", trust_remote_code=True) | |
# Prompt Enhancer | |
enhancer_long = pipeline("summarization", model="prithivMLmods/t5-Flan-Prompt-Enhance", device=device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# Qwen2VL caption function – updated to request plain text caption instead of JSON | |
def qwen_caption(image): | |
# Convert image to PIL if needed | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": "Generate a detailed and optimized caption for the given image."}, | |
], | |
} | |
] | |
text = qwen_processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = qwen_processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to(device) | |
generated_ids = qwen_model.generate(**inputs, max_new_tokens=1024) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = qwen_processor.batch_decode( | |
generated_ids_trimmed, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False, | |
)[0] | |
return output_text | |
# Prompt Enhancer function (unchanged) | |
def enhance_prompt(input_prompt): | |
result = enhancer_long("Enhance the description: " + input_prompt) | |
enhanced_text = result[0]['summary_text'] | |
return enhanced_text | |
def process_workflow(image, text_prompt, use_enhancer, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
if image is not None: | |
if not isinstance(image, Image.Image): | |
image = Image.fromarray(image) | |
prompt = qwen_caption(image) | |
print(prompt) | |
else: | |
prompt = text_prompt | |
if use_enhancer: | |
prompt = enhance_prompt(prompt) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
torch.cuda.empty_cache() | |
try: | |
image = pipe( | |
prompt=prompt, | |
generator=generator, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale | |
).images[0] | |
except RuntimeError as e: | |
if "CUDA out of memory" in str(e): | |
raise RuntimeError("CUDA out of memory. Try reducing image size or inference steps.") | |
else: | |
raise e | |
return image, prompt, seed | |
custom_css = """ | |
.input-group, .output-group { | |
} | |
.submit-btn { | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; | |
border: none !important; | |
color: white !important; | |
} | |
.submit-btn:hover { | |
background-color: #3498db !important; | |
} | |
""" | |
title = """<h1 align="center">FLUX.1-dev with Qwen2VL Captioner and Prompt Enhancer</h1> | |
<p><center> | |
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">[FLUX.1-dev Model]</a> | |
<a href="https://huggingface.co/prithivMLmods/JSONify-Flux" target="_blank">[JSONify Flux Model]</a> | |
<a href="https://huggingface.co/prithivMLmods/t5-Flan-Prompt-Enhance" target="_blank">[Prompt Enhancer t5]</a> | |
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p> | |
</center></p> | |
""" | |
with gr.Blocks(css=custom_css) as demo: | |
gr.HTML(title) | |
with gr.Sidebar(label="Parameters", open=True): | |
gr.Markdown( | |
""" | |
### About | |
#### Flux.1-Dev | |
FLUX.1 [dev] is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions. FLUX.1 [dev] is an open-weight, guidance-distilled model for non-commercial applications. Directly distilled from FLUX.1 [pro], FLUX.1 [dev] obtains similar quality and prompt adherence capabilities, while being more efficient than a standard model of the same size. | |
[FLUX.1-dev Model](https://huggingface.co/black-forest-labs/FLUX.1-dev) | |
#### JSONify-Flux | |
JSONify-Flux is a multimodal image-text-text model trained on a dataset of FLUX-generated images with context-rich captions based on the Qwen2VL architecture. The JSON-based instruction has been manually removed to avoid JSON format captions. | |
[JSONify-Flux Model](https://huggingface.co/prithivMLmods/JSONify-Flux) | |
#### t5-Flan-Prompt-Enhance | |
t5-Flan-Prompt-Enhance is a prompt summarization model that enriches synthetic FLUX prompts with more detailed descriptions. | |
[t5-Flan-Prompt-Enhance Model](https://huggingface.co/prithivMLmods/t5-Flan-Prompt-Enhance) | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes="input-group"): | |
input_image = gr.Image(label="Input Image (Qwen2VL Captioner)") | |
with gr.Accordion("Advanced Settings", open=False): | |
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)") | |
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512) | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=32) | |
generate_btn = gr.Button("Generate Image & Prompt", elem_classes="submit-btn") | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes="output-group"): | |
output_image = gr.Image(label="result", elem_id="gallery", show_label=False) | |
final_prompt = gr.Textbox(label="prompt") | |
used_seed = gr.Number(label="seed") | |
generate_btn.click( | |
fn=process_workflow, | |
inputs=[ | |
input_image, text_prompt, use_enhancer, seed, randomize_seed, | |
width, height, guidance_scale, num_inference_steps | |
], | |
outputs=[output_image, final_prompt, used_seed] | |
) | |
demo.launch(debug=True) |