prithivMLmods's picture
Update app.py
26f7b76 verified
raw
history blame
5.77 kB
import os
from threading import Thread
import gradio as gr
import spaces
import torch
import edge_tts
import asyncio
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from transformers.image_utils import load_image
from huggingface_hub import InferenceClient
import time
# Load text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
# Load multimodal (OCR) model and processor
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
def image_gen(prompt):
"""Generate image using API"""
try:
client = InferenceClient("prithivMLmods/STABLE-HAMSTER")
return client.text_to_image(prompt)
except:
client_flux = InferenceClient("black-forest-labs/FLUX.1-schnell")
return client_flux.text_to_image(prompt)
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save as MP3"""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
def clean_chat_history(chat_history):
return [msg for msg in chat_history if isinstance(msg, dict) and isinstance(msg.get("content"), str)]
@spaces.GPU
def generate(input_dict: dict, chat_history: list[dict], max_new_tokens=1024, temperature=0.6, top_p=0.9, top_k=50, repetition_penalty=1.2):
"""Generates chatbot responses with multimodal input, TTS, and image generation."""
text = input_dict["text"]
files = input_dict.get("files", [])
images = [load_image(file) for file in files] if files else []
if text.startswith("@tts"):
voice_index = next((i for i in range(1, 3) if text.startswith(f"@tts{i}")), None)
if voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"@tts{voice_index}", "").strip()
conversation = [{"role": "user", "content": text}]
else:
voice = None
elif text.startswith("@image"):
query = text.replace("@image", "").strip()
yield "Generating Image, Please wait..."
image = image_gen(query)
yield gr.Image(image)
else:
conversation = clean_chat_history(chat_history) + [{"role": "user", "content": text}]
if images:
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": img} for img in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
thread = Thread(target=model_m.generate, kwargs={**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens})
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
yield buffer
else:
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
thread = Thread(target=model.generate, kwargs={
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
})
thread.start()
response = "".join([new_text for new_text in streamer])
yield response
if voice:
output_file = asyncio.run(text_to_speech(response, voice))
yield gr.Audio(output_file, autoplay=True)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=2048, step=1, value=1024),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
["@tts1 Who is Nikola Tesla?"],
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
["@image futuristic city at sunset"],
["A train travels 60 kilometers per hour. How far will it travel in 5 hours?"],
],
cache_examples=False,
description="# QwQ Edge 💬",
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)