Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,399 +1,234 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import uuid
|
4 |
-
import json
|
5 |
-
import time
|
6 |
-
import asyncio
|
7 |
-
from threading import Thread
|
8 |
-
|
9 |
import gradio as gr
|
10 |
import spaces
|
11 |
-
import torch
|
12 |
import numpy as np
|
|
|
|
|
|
|
13 |
from PIL import Image
|
14 |
-
import edge_tts
|
15 |
-
import cv2
|
16 |
-
|
17 |
-
from transformers import (
|
18 |
-
AutoModelForCausalLM,
|
19 |
-
AutoTokenizer,
|
20 |
-
TextIteratorStreamer,
|
21 |
-
Qwen2VLForConditionalGeneration,
|
22 |
-
AutoProcessor,
|
23 |
-
)
|
24 |
-
from transformers.image_utils import load_image
|
25 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
26 |
-
|
27 |
-
MAX_MAX_NEW_TOKENS = 2048
|
28 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
29 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
30 |
-
|
31 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
-
|
33 |
-
# Load text-only model and tokenizer
|
34 |
-
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
35 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
36 |
-
model = AutoModelForCausalLM.from_pretrained(
|
37 |
-
model_id,
|
38 |
-
device_map="auto",
|
39 |
-
torch_dtype=torch.bfloat16,
|
40 |
-
)
|
41 |
-
model.eval()
|
42 |
-
|
43 |
-
TTS_VOICES = [
|
44 |
-
"en-US-JennyNeural", # @tts1
|
45 |
-
"en-US-GuyNeural", # @tts2
|
46 |
-
]
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
await communicate.save(output_file)
|
60 |
-
return output_file
|
61 |
-
|
62 |
-
def clean_chat_history(chat_history):
|
63 |
-
"""
|
64 |
-
Filter out any chat entries whose "content" is not a string.
|
65 |
-
This helps prevent errors when concatenating previous messages.
|
66 |
-
"""
|
67 |
-
cleaned = []
|
68 |
-
for msg in chat_history:
|
69 |
-
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
70 |
-
cleaned.append(msg)
|
71 |
-
return cleaned
|
72 |
-
|
73 |
-
# Environment variables and parameters for Stable Diffusion XL
|
74 |
-
# Use : SG161222/RealVisXL_V4.0_Lightning or SG161222/RealVisXL_V5.0_Lightning
|
75 |
-
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
76 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
77 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
78 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
79 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
80 |
-
|
81 |
-
# Load the SDXL pipeline
|
82 |
-
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
83 |
-
MODEL_ID_SD,
|
84 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
85 |
-
use_safetensors=True,
|
86 |
-
add_watermarker=False,
|
87 |
-
).to(device)
|
88 |
-
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
89 |
-
|
90 |
-
# Ensure that the text encoder is in half-precision if using CUDA.
|
91 |
-
if torch.cuda.is_available():
|
92 |
-
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
93 |
-
|
94 |
-
# Optional: compile the model for speedup if enabled
|
95 |
-
if USE_TORCH_COMPILE:
|
96 |
-
sd_pipe.compile()
|
97 |
-
|
98 |
-
# Optional: offload parts of the model to CPU if needed
|
99 |
-
if ENABLE_CPU_OFFLOAD:
|
100 |
-
sd_pipe.enable_model_cpu_offload()
|
101 |
|
102 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
111 |
if randomize_seed:
|
112 |
seed = random.randint(0, MAX_SEED)
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
The progress bar is styled as a dark red animated bar.
|
119 |
-
"""
|
120 |
-
return f'''
|
121 |
-
<div style="display: flex; align-items: center;">
|
122 |
-
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
123 |
-
<div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;">
|
124 |
-
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
|
125 |
-
</div>
|
126 |
-
</div>
|
127 |
-
<style>
|
128 |
-
@keyframes loading {{
|
129 |
-
0% {{ transform: translateX(-100%); }}
|
130 |
-
100% {{ transform: translateX(100%); }}
|
131 |
-
}}
|
132 |
-
</style>
|
133 |
-
'''
|
134 |
-
|
135 |
-
def downsample_video(video_path):
|
136 |
-
"""
|
137 |
-
Downsamples the video to 10 evenly spaced frames.
|
138 |
-
Each frame is returned as a PIL image along with its timestamp.
|
139 |
-
"""
|
140 |
-
vidcap = cv2.VideoCapture(video_path)
|
141 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
142 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
143 |
-
frames = []
|
144 |
-
# Sample 10 evenly spaced frames.
|
145 |
-
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
146 |
-
for i in frame_indices:
|
147 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
148 |
-
success, image = vidcap.read()
|
149 |
-
if success:
|
150 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
|
151 |
-
pil_image = Image.fromarray(image)
|
152 |
-
timestamp = round(i / fps, 2)
|
153 |
-
frames.append((pil_image, timestamp))
|
154 |
-
vidcap.release()
|
155 |
-
return frames
|
156 |
-
|
157 |
-
@spaces.GPU(duration=60, enable_queue=True)
|
158 |
-
def generate_image_fn(
|
159 |
-
prompt: str,
|
160 |
-
negative_prompt: str = "",
|
161 |
-
use_negative_prompt: bool = False,
|
162 |
-
seed: int = 1,
|
163 |
-
width: int = 1024,
|
164 |
-
height: int = 1024,
|
165 |
-
guidance_scale: float = 3,
|
166 |
-
num_inference_steps: int = 25,
|
167 |
-
randomize_seed: bool = False,
|
168 |
-
use_resolution_binning: bool = True,
|
169 |
-
num_images: int = 1,
|
170 |
-
progress=gr.Progress(track_tqdm=True),
|
171 |
-
):
|
172 |
-
"""Generate images using the SDXL pipeline."""
|
173 |
-
seed = int(randomize_seed_fn(seed, randomize_seed))
|
174 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
175 |
|
176 |
options = {
|
177 |
-
"prompt":
|
178 |
-
"negative_prompt":
|
179 |
-
"width": width,
|
180 |
-
"height": height,
|
181 |
"guidance_scale": guidance_scale,
|
182 |
"num_inference_steps": num_inference_steps,
|
|
|
|
|
183 |
"generator": generator,
|
184 |
-
"
|
185 |
}
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
{"type": "text", "text": text},
|
323 |
-
]
|
324 |
-
}]
|
325 |
-
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
326 |
-
inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda")
|
327 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
328 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
329 |
-
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
330 |
-
thread.start()
|
331 |
-
buffer = ""
|
332 |
-
yield progress_bar_html("Thinking...")
|
333 |
-
for new_text in streamer:
|
334 |
-
buffer += new_text
|
335 |
-
buffer = buffer.replace("<|im_end|>", "")
|
336 |
-
time.sleep(0.01)
|
337 |
-
yield buffer
|
338 |
-
else:
|
339 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
340 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
341 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
342 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
343 |
-
input_ids = input_ids.to(model.device)
|
344 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
345 |
-
generation_kwargs = {
|
346 |
-
"input_ids": input_ids,
|
347 |
-
"streamer": streamer,
|
348 |
-
"max_new_tokens": max_new_tokens,
|
349 |
-
"do_sample": True,
|
350 |
-
"top_p": top_p,
|
351 |
-
"top_k": top_k,
|
352 |
-
"temperature": temperature,
|
353 |
-
"num_beams": 1,
|
354 |
-
"repetition_penalty": repetition_penalty,
|
355 |
-
}
|
356 |
-
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
357 |
-
t.start()
|
358 |
-
outputs = []
|
359 |
-
yield progress_bar_html("Processing...")
|
360 |
-
for new_text in streamer:
|
361 |
-
outputs.append(new_text)
|
362 |
-
yield "".join(outputs)
|
363 |
-
final_response = "".join(outputs)
|
364 |
-
yield final_response
|
365 |
-
if is_tts and voice:
|
366 |
-
output_file = asyncio.run(text_to_speech(final_response, voice))
|
367 |
-
yield gr.Audio(output_file, autoplay=True)
|
368 |
-
|
369 |
-
demo = gr.ChatInterface(
|
370 |
-
fn=generate,
|
371 |
-
additional_inputs=[
|
372 |
-
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
373 |
-
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
374 |
-
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
375 |
-
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
376 |
-
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
377 |
-
],
|
378 |
-
examples=[
|
379 |
-
["Write the Python Program for Array Rotation"],
|
380 |
-
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
381 |
-
[{"text": "@video-infer Describe the Ad", "files": ["examples/coca.mp4"]}],
|
382 |
-
[{"text": "@video-infer Summarize the event in video", "files": ["examples/sky.mp4"]}],
|
383 |
-
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
|
384 |
-
["@image Chocolate dripping from a donut"],
|
385 |
-
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
386 |
-
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
|
387 |
-
["@tts2 What causes rainbows to form?"],
|
388 |
-
],
|
389 |
-
cache_examples=False,
|
390 |
-
type="messages",
|
391 |
-
description="# **QwQ Edge `@video-infer 'prompt..', @image, @tts1`**",
|
392 |
-
fill_height=True,
|
393 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder=" @tts1, @tts2-voices, @image for image gen, @video-infer for video, default [text, vision]"),
|
394 |
-
stop_btn="Stop Generation",
|
395 |
-
multimodal=True,
|
396 |
-
)
|
397 |
|
398 |
if __name__ == "__main__":
|
399 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
|
|
3 |
import numpy as np
|
4 |
+
import random
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
+
import torch
|
7 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
|
11 |
+
|
12 |
+
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
13 |
+
|
14 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
+
pipe = pipe.to(device)
|
16 |
+
|
17 |
+
pipe.load_lora_weights("prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", weight_name="SD3.5-Turbo-Realism-2.0-LoRA.safetensors")
|
18 |
+
trigger_word = "Turbo Realism"
|
19 |
+
pipe.fuse_lora(lora_scale=1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
+
MAX_IMAGE_SIZE = 1024
|
23 |
+
|
24 |
+
# Define styles
|
25 |
+
style_list = [
|
26 |
+
{
|
27 |
+
"name": "3840 x 2160",
|
28 |
+
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
29 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"name": "2560 x 1440",
|
33 |
+
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
34 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "HD+",
|
38 |
+
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
39 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"name": "Style Zero",
|
43 |
+
"prompt": "{prompt}",
|
44 |
+
"negative_prompt": "",
|
45 |
+
},
|
46 |
+
]
|
47 |
|
48 |
+
STYLE_NAMES = [style["name"] for style in style_list]
|
49 |
+
DEFAULT_STYLE_NAME = STYLE_NAMES[0]
|
50 |
+
|
51 |
+
grid_sizes = {
|
52 |
+
"2x1": (2, 1),
|
53 |
+
"1x2": (1, 2),
|
54 |
+
"2x2": (2, 2),
|
55 |
+
"2x3": (2, 3),
|
56 |
+
"3x2": (3, 2),
|
57 |
+
"1x1": (1, 1)
|
58 |
+
}
|
59 |
+
|
60 |
+
@spaces.GPU(duration=60)
|
61 |
+
def infer(
|
62 |
+
prompt,
|
63 |
+
negative_prompt="",
|
64 |
+
seed=42,
|
65 |
+
randomize_seed=False,
|
66 |
+
width=1024,
|
67 |
+
height=1024,
|
68 |
+
guidance_scale=7.5,
|
69 |
+
num_inference_steps=10,
|
70 |
+
style="Style Zero",
|
71 |
+
grid_size="1x1",
|
72 |
+
progress=gr.Progress(track_tqdm=True),
|
73 |
+
):
|
74 |
+
selected_style = next(s for s in style_list if s["name"] == style)
|
75 |
+
styled_prompt = selected_style["prompt"].format(prompt=prompt)
|
76 |
+
styled_negative_prompt = selected_style["negative_prompt"]
|
77 |
|
|
|
78 |
if randomize_seed:
|
79 |
seed = random.randint(0, MAX_SEED)
|
80 |
+
|
81 |
+
generator = torch.Generator().manual_seed(seed)
|
82 |
+
|
83 |
+
grid_size_x, grid_size_y = grid_sizes.get(grid_size, (1, 1))
|
84 |
+
num_images = grid_size_x * grid_size_y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
options = {
|
87 |
+
"prompt": styled_prompt,
|
88 |
+
"negative_prompt": styled_negative_prompt,
|
|
|
|
|
89 |
"guidance_scale": guidance_scale,
|
90 |
"num_inference_steps": num_inference_steps,
|
91 |
+
"width": width,
|
92 |
+
"height": height,
|
93 |
"generator": generator,
|
94 |
+
"num_images_per_prompt": num_images,
|
95 |
}
|
96 |
+
|
97 |
+
torch.cuda.empty_cache() # Clear GPU memory
|
98 |
+
result = pipe(**options)
|
99 |
+
|
100 |
+
grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))
|
101 |
+
|
102 |
+
for i, img in enumerate(result.images[:num_images]):
|
103 |
+
grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))
|
104 |
+
|
105 |
+
return grid_img, seed
|
106 |
+
|
107 |
+
examples = [
|
108 |
+
"A tiny astronaut hatching from an egg on the moon, 4k, planet theme",
|
109 |
+
"An anime-style illustration of a delicious, golden-brown wiener schnitzel on a plate, served with fresh lemon slices, parsley --style raw5",
|
110 |
+
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic",
|
111 |
+
"A cat holding a sign that says hello world --ar 85:128 --v 6.0 --style raw"
|
112 |
+
]
|
113 |
+
|
114 |
+
css = '''
|
115 |
+
.gradio-container{max-width: 585px !important}
|
116 |
+
h1{text-align:center}
|
117 |
+
footer {
|
118 |
+
visibility: hidden
|
119 |
+
}
|
120 |
+
'''
|
121 |
+
|
122 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
123 |
+
with gr.Column(elem_id="col-container"):
|
124 |
+
gr.Markdown("## GRID 6X🪨")
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
prompt = gr.Text(
|
128 |
+
label="Prompt",
|
129 |
+
show_label=False,
|
130 |
+
max_lines=1,
|
131 |
+
placeholder="Enter your prompt",
|
132 |
+
container=False,
|
133 |
+
)
|
134 |
+
|
135 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
136 |
+
|
137 |
+
result = gr.Image(label="Result", show_label=False)
|
138 |
+
|
139 |
+
|
140 |
+
with gr.Row(visible=True):
|
141 |
+
grid_size_selection = gr.Dropdown(
|
142 |
+
choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"],
|
143 |
+
value="1x1",
|
144 |
+
label="Grid Size"
|
145 |
+
)
|
146 |
+
|
147 |
+
with gr.Accordion("Advanced Settings", open=False):
|
148 |
+
negative_prompt = gr.Text(
|
149 |
+
label="Negative prompt",
|
150 |
+
max_lines=1,
|
151 |
+
placeholder="Enter a negative prompt",
|
152 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
153 |
+
visible=False,
|
154 |
+
)
|
155 |
+
|
156 |
+
seed = gr.Slider(
|
157 |
+
label="Seed",
|
158 |
+
minimum=0,
|
159 |
+
maximum=MAX_SEED,
|
160 |
+
step=1,
|
161 |
+
value=0,
|
162 |
+
)
|
163 |
+
|
164 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
width = gr.Slider(
|
168 |
+
label="Width",
|
169 |
+
minimum=512,
|
170 |
+
maximum=MAX_IMAGE_SIZE,
|
171 |
+
step=32,
|
172 |
+
value=1024,
|
173 |
+
)
|
174 |
+
|
175 |
+
height = gr.Slider(
|
176 |
+
label="Height",
|
177 |
+
minimum=512,
|
178 |
+
maximum=MAX_IMAGE_SIZE,
|
179 |
+
step=32,
|
180 |
+
value=1024,
|
181 |
+
)
|
182 |
+
|
183 |
+
with gr.Row():
|
184 |
+
guidance_scale = gr.Slider(
|
185 |
+
label="Guidance scale",
|
186 |
+
minimum=0.0,
|
187 |
+
maximum=7.5,
|
188 |
+
step=0.1,
|
189 |
+
value=0.0,
|
190 |
+
)
|
191 |
+
|
192 |
+
num_inference_steps = gr.Slider(
|
193 |
+
label="Number of inference steps",
|
194 |
+
minimum=1,
|
195 |
+
maximum=50,
|
196 |
+
step=1,
|
197 |
+
value=8,
|
198 |
+
)
|
199 |
+
|
200 |
+
style_selection = gr.Radio(
|
201 |
+
show_label=True,
|
202 |
+
container=True,
|
203 |
+
interactive=True,
|
204 |
+
choices=STYLE_NAMES,
|
205 |
+
value=DEFAULT_STYLE_NAME,
|
206 |
+
label="Quality Style",
|
207 |
+
)
|
208 |
+
|
209 |
+
gr.Examples(examples=examples,
|
210 |
+
inputs=[prompt],
|
211 |
+
outputs=[result, seed],
|
212 |
+
fn=infer,
|
213 |
+
cache_examples=False)
|
214 |
+
|
215 |
+
gr.on(
|
216 |
+
triggers=[run_button.click, prompt.submit],
|
217 |
+
fn=infer,
|
218 |
+
inputs=[
|
219 |
+
prompt,
|
220 |
+
negative_prompt,
|
221 |
+
seed,
|
222 |
+
randomize_seed,
|
223 |
+
width,
|
224 |
+
height,
|
225 |
+
guidance_scale,
|
226 |
+
num_inference_steps,
|
227 |
+
style_selection,
|
228 |
+
grid_size_selection,
|
229 |
+
],
|
230 |
+
outputs=[result, seed],
|
231 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
if __name__ == "__main__":
|
234 |
+
demo.launch()
|