Spaces:
Sleeping
Sleeping
Initial commit
Browse files- InferenceServer.py +67 -1
- app.py +211 -0
- custom_req.txt +14 -0
InferenceServer.py
CHANGED
@@ -1 +1,67 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uvicorn
|
2 |
+
from fastapi import File
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from fastapi import UploadFile
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import glob
|
9 |
+
import transformers
|
10 |
+
from transformers import AutoTokenizer
|
11 |
+
from transformers import AutoModelForSeq2SeqLM
|
12 |
+
from lm_scorer.models.auto import AutoLMScorer as LMScorer
|
13 |
+
|
14 |
+
|
15 |
+
print("Loading models...")
|
16 |
+
app = FastAPI()
|
17 |
+
|
18 |
+
device = "cpu"
|
19 |
+
batch_size = 1
|
20 |
+
scorer = LMScorer.from_pretrained("gpt2", device=device, batch_size=batch_size)
|
21 |
+
correction_model_tag = "prithivida/grammar_error_correcter_v2"
|
22 |
+
correction_tokenizer = AutoTokenizer.from_pretrained(correction_model_tag)
|
23 |
+
correction_model = AutoModelForSeq2SeqLM.from_pretrained(correction_model_tag)
|
24 |
+
|
25 |
+
def set_seed(seed):
|
26 |
+
torch.manual_seed(seed)
|
27 |
+
if torch.cuda.is_available():
|
28 |
+
torch.cuda.manual_seed_all(seed)
|
29 |
+
|
30 |
+
print("Models loaded !")
|
31 |
+
|
32 |
+
|
33 |
+
@app.get("/")
|
34 |
+
def read_root():
|
35 |
+
return {"Gramformer !"}
|
36 |
+
|
37 |
+
@app.get("/{correct}")
|
38 |
+
def get_correction(input_sentence):
|
39 |
+
set_seed(1212)
|
40 |
+
scored_corrected_sentence = correct(input_sentence)
|
41 |
+
return {"scored_corrected_sentence": scored_corrected_sentence}
|
42 |
+
|
43 |
+
def correct(input_sentence, max_candidates=1):
|
44 |
+
correction_prefix = "gec: "
|
45 |
+
input_sentence = correction_prefix + input_sentence
|
46 |
+
input_ids = correction_tokenizer.encode(input_sentence, return_tensors='pt')
|
47 |
+
input_ids = input_ids.to(device)
|
48 |
+
|
49 |
+
preds = correction_model.generate(
|
50 |
+
input_ids,
|
51 |
+
do_sample=True,
|
52 |
+
max_length=128,
|
53 |
+
top_k=50,
|
54 |
+
top_p=0.95,
|
55 |
+
early_stopping=True,
|
56 |
+
num_return_sequences=max_candidates)
|
57 |
+
|
58 |
+
corrected = set()
|
59 |
+
for pred in preds:
|
60 |
+
corrected.add(correction_tokenizer.decode(pred, skip_special_tokens=True).strip())
|
61 |
+
|
62 |
+
corrected = list(corrected)
|
63 |
+
scores = scorer.sentence_score(corrected, log=True)
|
64 |
+
ranked_corrected = [(c,s) for c, s in zip(corrected, scores)]
|
65 |
+
ranked_corrected.sort(key = lambda x:x[1], reverse=True)
|
66 |
+
return ranked_corrected
|
67 |
+
|
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from annotated_text import annotated_text
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
from multiprocessing import Process
|
4 |
+
import streamlit as st
|
5 |
+
import pandas as pd
|
6 |
+
import torch
|
7 |
+
import math
|
8 |
+
import re
|
9 |
+
import time
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
import requests
|
13 |
+
import spacy
|
14 |
+
import errant
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def start_server():
|
19 |
+
os.system("cat custom_req.txt | xargs -n 1 -L 1 pip install -U")
|
20 |
+
os.system("uvicorn InferenceServer:app --port 8080 --host 0.0.0.0 --workers 1")
|
21 |
+
|
22 |
+
def load_models():
|
23 |
+
if not is_port_in_use(8080):
|
24 |
+
with st.spinner(text="Loading models, please wait..."):
|
25 |
+
proc = Process(target=start_server, args=(), daemon=True)
|
26 |
+
proc.start()
|
27 |
+
while not is_port_in_use(8080):
|
28 |
+
time.sleep(1)
|
29 |
+
st.success("Model server started.")
|
30 |
+
else:
|
31 |
+
st.success("Model server already running...")
|
32 |
+
st.session_state['models_loaded'] = True
|
33 |
+
|
34 |
+
def is_port_in_use(port):
|
35 |
+
import socket
|
36 |
+
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
37 |
+
return s.connect_ex(('0.0.0.0', port)) == 0
|
38 |
+
|
39 |
+
if 'models_loaded' not in st.session_state:
|
40 |
+
st.session_state['models_loaded'] = False
|
41 |
+
|
42 |
+
|
43 |
+
def show_highlights(input_text, corrected_sentence):
|
44 |
+
"""
|
45 |
+
To show highlights
|
46 |
+
"""
|
47 |
+
try:
|
48 |
+
strikeout = lambda x: '\u0336'.join(x) + '\u0336'
|
49 |
+
highlight_text = highlight(input_text, corrected_sentence)
|
50 |
+
color_map = {'d':'#faa', 'a':'#afa', 'c':'#fea'}
|
51 |
+
tokens = re.split(r'(<[dac]\s.*?<\/[dac]>)', highlight_text)
|
52 |
+
annotations = []
|
53 |
+
for token in tokens:
|
54 |
+
soup = BeautifulSoup(token, 'html.parser')
|
55 |
+
tags = soup.findAll()
|
56 |
+
if tags:
|
57 |
+
_tag = tags[0].name
|
58 |
+
_type = tags[0]['type']
|
59 |
+
_text = tags[0]['edit']
|
60 |
+
_color = color_map[_tag]
|
61 |
+
|
62 |
+
if _tag == 'd':
|
63 |
+
_text = strikeout(tags[0].text)
|
64 |
+
|
65 |
+
annotations.append((_text, _type, _color))
|
66 |
+
else:
|
67 |
+
annotations.append(token)
|
68 |
+
annotated_text(*annotations)
|
69 |
+
except Exception as e:
|
70 |
+
st.error('Some error occured!' + str(e))
|
71 |
+
st.stop()
|
72 |
+
|
73 |
+
def show_edits(input_text, corrected_sentence):
|
74 |
+
"""
|
75 |
+
To show edits
|
76 |
+
"""
|
77 |
+
try:
|
78 |
+
edits = get_edits(input_text, corrected_sentence)
|
79 |
+
df = pd.DataFrame(edits, columns=['type','original word', 'original start', 'original end', 'correct word', 'correct start', 'correct end'])
|
80 |
+
df = df.set_index('type')
|
81 |
+
st.table(df)
|
82 |
+
except Exception as e:
|
83 |
+
st.error('Some error occured!')
|
84 |
+
st.stop()
|
85 |
+
|
86 |
+
def highlight(orig, cor):
|
87 |
+
edits = _get_edits(orig, cor)
|
88 |
+
orig_tokens = orig.split()
|
89 |
+
|
90 |
+
ignore_indexes = []
|
91 |
+
|
92 |
+
for edit in edits:
|
93 |
+
edit_type = edit[0]
|
94 |
+
edit_str_start = edit[1]
|
95 |
+
edit_spos = edit[2]
|
96 |
+
edit_epos = edit[3]
|
97 |
+
edit_str_end = edit[4]
|
98 |
+
|
99 |
+
# if no_of_tokens(edit_str_start) > 1 ==> excluding the first token, mark all other tokens for deletion
|
100 |
+
for i in range(edit_spos+1, edit_epos):
|
101 |
+
ignore_indexes.append(i)
|
102 |
+
|
103 |
+
if edit_str_start == "":
|
104 |
+
if edit_spos - 1 >= 0:
|
105 |
+
new_edit_str = orig_tokens[edit_spos - 1]
|
106 |
+
edit_spos -= 1
|
107 |
+
else:
|
108 |
+
new_edit_str = orig_tokens[edit_spos + 1]
|
109 |
+
edit_spos += 1
|
110 |
+
if edit_type == "PUNCT":
|
111 |
+
st = "<a type='" + edit_type + "' edit='" + \
|
112 |
+
edit_str_end + "'>" + new_edit_str + "</a>"
|
113 |
+
else:
|
114 |
+
st = "<a type='" + edit_type + "' edit='" + new_edit_str + \
|
115 |
+
" " + edit_str_end + "'>" + new_edit_str + "</a>"
|
116 |
+
orig_tokens[edit_spos] = st
|
117 |
+
elif edit_str_end == "":
|
118 |
+
st = "<d type='" + edit_type + "' edit=''>" + edit_str_start + "</d>"
|
119 |
+
orig_tokens[edit_spos] = st
|
120 |
+
else:
|
121 |
+
st = "<c type='" + edit_type + "' edit='" + \
|
122 |
+
edit_str_end + "'>" + edit_str_start + "</c>"
|
123 |
+
orig_tokens[edit_spos] = st
|
124 |
+
|
125 |
+
for i in sorted(ignore_indexes, reverse=True):
|
126 |
+
del(orig_tokens[i])
|
127 |
+
|
128 |
+
return(" ".join(orig_tokens))
|
129 |
+
|
130 |
+
|
131 |
+
def _get_edits(orig, cor):
|
132 |
+
orig = annotator.parse(orig)
|
133 |
+
cor = annotator.parse(cor)
|
134 |
+
alignment = annotator.align(orig, cor)
|
135 |
+
edits = annotator.merge(alignment)
|
136 |
+
|
137 |
+
if len(edits) == 0:
|
138 |
+
return []
|
139 |
+
|
140 |
+
edit_annotations = []
|
141 |
+
for e in edits:
|
142 |
+
e = annotator.classify(e)
|
143 |
+
edit_annotations.append((e.type[2:], e.o_str, e.o_start, e.o_end, e.c_str, e.c_start, e.c_end))
|
144 |
+
|
145 |
+
if len(edit_annotations) > 0:
|
146 |
+
return edit_annotations
|
147 |
+
else:
|
148 |
+
return []
|
149 |
+
|
150 |
+
def get_edits(orig, cor):
|
151 |
+
return _get_edits(orig, cor)
|
152 |
+
|
153 |
+
def get_correction(input_text):
|
154 |
+
correct_request = "http://0.0.0.0:8080/correct?input_sentence="+input_text
|
155 |
+
correct_response = requests.get(correct_request)
|
156 |
+
correct_json = json.loads(correct_response.text)
|
157 |
+
scored_corrected_sentence = correct_json["scored_corrected_sentence"]
|
158 |
+
|
159 |
+
corrected_sentence, score = scored_corrected_sentence[0]
|
160 |
+
st.markdown(f'##### Corrected text:')
|
161 |
+
st.write('')
|
162 |
+
st.success(corrected_sentence)
|
163 |
+
exp1 = st.expander(label='Show highlights', expanded=True)
|
164 |
+
with exp1:
|
165 |
+
show_highlights(input_text, corrected_sentence)
|
166 |
+
exp2 = st.expander(label='Show edits')
|
167 |
+
with exp2:
|
168 |
+
show_edits(input_text, corrected_sentence)
|
169 |
+
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
if not st.session_state['models_loaded']:
|
173 |
+
load_models()
|
174 |
+
|
175 |
+
|
176 |
+
st.title('Gramformer')
|
177 |
+
st.subheader('A framework for correcting english grammatical errors')
|
178 |
+
st.markdown("Built for fun with 💙 by a quintessential foodie - Prithivi Da, The maker of [WhatTheFood](https://huggingface.co/spaces/prithivida/WhatTheFood), [Styleformer](https://github.com/PrithivirajDamodaran/Styleformer) and [Parrot paraphraser](https://github.com/PrithivirajDamodaran/Parrot_Paraphraser) | ✍️ [@prithivida](https://twitter.com/prithivida) |[[GitHub]](https://github.com/PrithivirajDamodaran)", unsafe_allow_html=True)
|
179 |
+
|
180 |
+
examples = [
|
181 |
+
"what be the reason for everyone leave the comapny",
|
182 |
+
"He are moving here.",
|
183 |
+
"I am doing fine. How is you?",
|
184 |
+
"How is they?",
|
185 |
+
"Matt like fish",
|
186 |
+
"the collection of letters was original used by the ancient Romans",
|
187 |
+
"We enjoys horror movies",
|
188 |
+
"Anna and Mike is going skiing",
|
189 |
+
"I walk to the store and I bought milk",
|
190 |
+
" We all eat the fish and then made dessert",
|
191 |
+
"I will eat fish for dinner and drink milk",
|
192 |
+
]
|
193 |
+
|
194 |
+
nlp = spacy.load('en_core_web_sm')
|
195 |
+
annotator = errant.load('en', nlp)
|
196 |
+
|
197 |
+
input_text = st.selectbox(
|
198 |
+
label="Choose an example",
|
199 |
+
options=examples
|
200 |
+
)
|
201 |
+
st.write("(or)")
|
202 |
+
input_text = st.text_input(
|
203 |
+
label="Enter your own text",
|
204 |
+
value=input_text
|
205 |
+
)
|
206 |
+
|
207 |
+
if input_text.strip():
|
208 |
+
get_correction(input_text)
|
209 |
+
|
210 |
+
|
211 |
+
|
custom_req.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
st-annotated-text
|
2 |
+
bs4
|
3 |
+
torch
|
4 |
+
fastapi
|
5 |
+
uvicorn
|
6 |
+
spacy==2.3.0
|
7 |
+
python-Levenshtein==0.12.2
|
8 |
+
errant==2.2.0
|
9 |
+
lm-scorer==0.4.2
|
10 |
+
fsspec==2021.5.0
|
11 |
+
tokenizers
|
12 |
+
fuzzywuzzy==0.18.0
|
13 |
+
sentencepiece==0.1.95
|
14 |
+
transformers
|