Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.chains import create_retrieval_chain | |
from langchain_community.vectorstores import FAISS | |
from dotenv import load_dotenv | |
import tempfile | |
import time | |
load_dotenv() | |
# load the Nvidia API key | |
os.environ['NVIDIA_API_KEY'] = os.getenv('NVIDIA_API_KEY') | |
llm = ChatNVIDIA(model="meta/llama3-70b-instruct") | |
def vector_embedding(pdf_file): | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file: | |
tmp_file.write(pdf_file.getvalue()) | |
tmp_file_path = tmp_file.name | |
st.session_state.embeddings = NVIDIAEmbeddings() | |
st.session_state.loader = PyPDFLoader(tmp_file_path) | |
st.session_state.docs = st.session_state.loader.load() | |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=50) | |
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs) | |
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) | |
os.unlink(tmp_file_path) | |
st.title("Chat with PDF") | |
prompt = ChatPromptTemplate.from_template( | |
""" | |
Answer the questions based on the provided context only. | |
Please provide the most accurate response based on the question | |
<context> | |
{context} | |
</context> | |
Question: {input} | |
""" | |
) | |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") | |
if uploaded_file is not None: | |
if st.button("Process PDF"): | |
with st.spinner("Processing PDF..."): | |
vector_embedding(uploaded_file) | |
st.success("FAISS Vector Store DB is ready using NvidiaEmbedding") | |
prompt1 = st.text_input("Enter your question about the uploaded document") | |
if prompt1 and 'vectors' in st.session_state: | |
document_chain = create_stuff_documents_chain(llm, prompt) | |
retriever = st.session_state.vectors.as_retriever() | |
retrieval_chain = create_retrieval_chain(retriever, document_chain) | |
with st.spinner("Generating answer..."): | |
start = time.process_time() | |
response = retrieval_chain.invoke({'input': prompt1}) | |
end = time.process_time() | |
st.write("Answer:", response['answer']) | |
st.write(f"Response time: {end - start:.2f} seconds") | |
with st.expander("Document Similarity Search"): | |
for i, doc in enumerate(response["context"]): | |
st.write(f"Chunk {i + 1}:") | |
st.write(doc.page_content) | |
st.write("------------------------------------------") | |
else: | |
if prompt1: | |
st.warning("Please upload and process a PDF document first.") |