Spaces:
Sleeping
Sleeping
Image caption generator files
Browse files- CapGen.h5 +3 -0
- VGGModel.h5 +3 -0
- app.py +30 -0
- requirements.txt +7 -0
- tokenizer.pickle +3 -0
- util.py +70 -0
CapGen.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64ae41da5492e7f0eed48871c657d84b7e30a8773f2296082cbc4814a6370206
|
3 |
+
size 71970004
|
VGGModel.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54d3f0c3eaff7acc305672af334af23bac9ac39da654296b0a6175c0fc7cdd87
|
3 |
+
size 537113328
|
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import io
|
6 |
+
from util import generate_caption
|
7 |
+
|
8 |
+
# Function to load the model
|
9 |
+
|
10 |
+
# Streamlit app
|
11 |
+
st.title("Image Caption Generator")
|
12 |
+
|
13 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg"])
|
14 |
+
|
15 |
+
if uploaded_file is not None:
|
16 |
+
image = Image.open(uploaded_file)
|
17 |
+
image = image.resize((224, 224))
|
18 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
19 |
+
st.write("")
|
20 |
+
st.write("Generating caption...")
|
21 |
+
caption = generate_caption(image)
|
22 |
+
st.write(f"Caption: {caption}")
|
23 |
+
|
24 |
+
# Add some information about the app
|
25 |
+
st.sidebar.header("About")
|
26 |
+
st.sidebar.info("This app uses a Deep Learning model(RNN model) along with VGG16 model(feature extractor) to generate captions for uploaded images.")
|
27 |
+
st.sidebar.info("Upload an image to get started!")
|
28 |
+
st.sidebar.info("The model is trained on Flickr8k dataset.")
|
29 |
+
st.sidebar.info("By Priyesh Gawali")
|
30 |
+
st.sidebar.markdown("[Github repository](https://github.com/Roronoa-17/Image_Caption_Generator.git)")
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
numpy
|
3 |
+
streamlit==1.35.0
|
4 |
+
scikit-learn
|
5 |
+
pickle-mixin
|
6 |
+
Pillow
|
7 |
+
gdown
|
tokenizer.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e21b2723c91942491147ae3d21fc27cb9afac743712c76497f6ddc376b24d8bf
|
3 |
+
size 334824
|
util.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras.applications.vgg16 import preprocess_input
|
3 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
import numpy as np
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
CapGenerator = tf.keras.models.load_model('models/CapGen.h5')
|
9 |
+
VGGMod = tf.keras.models.load_model('models/VGGModel.h5')
|
10 |
+
max_length = 35
|
11 |
+
|
12 |
+
with open('models/tokenizer.pickle', 'rb') as handle:
|
13 |
+
tokenizer = pickle.load(handle)
|
14 |
+
|
15 |
+
vocab_size = len(tokenizer.word_index) + 1
|
16 |
+
|
17 |
+
def idx_to_word(integer, tokenizer):
|
18 |
+
for word, index in tokenizer.word_index.items():
|
19 |
+
if index == integer:
|
20 |
+
return word
|
21 |
+
return None
|
22 |
+
|
23 |
+
def predict_caption(model, image, tokenizer, max_length=max_length):
|
24 |
+
# add start tag for generation process
|
25 |
+
in_text = 'startseq'
|
26 |
+
# iterate over the max length of sequence
|
27 |
+
for i in range(max_length):
|
28 |
+
# encode input sequence
|
29 |
+
sequence = tokenizer.texts_to_sequences([in_text])[0]
|
30 |
+
# pad the sequence
|
31 |
+
sequence = pad_sequences([sequence], max_length)
|
32 |
+
# predict next word
|
33 |
+
yhat = model.predict([image, sequence], verbose=0)
|
34 |
+
# get index with high probability
|
35 |
+
yhat = np.argmax(yhat)
|
36 |
+
# convert index to word
|
37 |
+
word = idx_to_word(yhat, tokenizer)
|
38 |
+
# stop if word not found
|
39 |
+
if word is None:
|
40 |
+
break
|
41 |
+
# append word as input for generating next word
|
42 |
+
in_text += " " + word
|
43 |
+
# stop if we reach end tag
|
44 |
+
if word == 'endseq':
|
45 |
+
break
|
46 |
+
|
47 |
+
return in_text
|
48 |
+
|
49 |
+
def feature_extractor(image):
|
50 |
+
|
51 |
+
# Img to np array
|
52 |
+
image = img_to_array(image)
|
53 |
+
|
54 |
+
# Reshaping
|
55 |
+
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
|
56 |
+
|
57 |
+
# Preprocessing for passing through VGG16
|
58 |
+
image = preprocess_input(image)
|
59 |
+
|
60 |
+
feature = VGGMod.predict(image, verbose=0)
|
61 |
+
|
62 |
+
return feature
|
63 |
+
|
64 |
+
def generate_caption(image_name):
|
65 |
+
|
66 |
+
y_pred = predict_caption(CapGenerator, feature_extractor(image_name), tokenizer, max_length)
|
67 |
+
y_pred = y_pred[8:-7].upper()
|
68 |
+
|
69 |
+
return y_pred
|
70 |
+
|