Spaces:
Sleeping
Sleeping
import firebase_admin | |
from firebase_admin import credentials | |
from firebase_admin import firestore | |
import io | |
from fastapi import FastAPI, File, UploadFile | |
from werkzeug.utils import secure_filename | |
import speech_recognition as sr | |
import subprocess | |
import os | |
import requests | |
import random | |
import pandas as pd | |
from pydub import AudioSegment | |
from datetime import datetime | |
from datetime import date | |
import numpy as np | |
from sklearn.ensemble import RandomForestRegressor | |
import shutil | |
import json | |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline | |
from pydantic import BaseModel | |
from typing import Annotated | |
from transformers import BertTokenizerFast, EncoderDecoderModel | |
import torch | |
import random | |
import string | |
import time | |
from huggingface_hub import InferenceClient | |
from fastapi import Form | |
class Query(BaseModel): | |
text: str | |
code:str | |
host:str | |
class Query2(BaseModel): | |
text: str | |
code:str | |
filename:str | |
host:str | |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# tokenizer = BertTokenizerFast.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization') | |
# model = EncoderDecoderModel.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization').to(device) | |
from fastapi import FastAPI, Request, Depends, UploadFile, File | |
from fastapi.exceptions import HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import JSONResponse | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=['*'], | |
allow_credentials=True, | |
allow_methods=['*'], | |
allow_headers=['*'], | |
) | |
# cred = credentials.Certificate('key.json') | |
# app1 = firebase_admin.initialize_app(cred) | |
# db = firestore.client() | |
# data_frame = pd.read_csv('data.csv') | |
async def startup_event(): | |
print("on startup") | |
# requests.get("https://audiospace-1-u9912847.deta.app/sendcode") | |
audio_space="https://audiospace-1-u9912847.deta.app/uphoto" | |
# @app.post("/code") | |
# async def get_code(request: Request): | |
# data = await request.form() | |
# code = data.get("code") | |
# global audio_space | |
# print("code ="+code) | |
# audio_space= audio_space+code | |
import threading | |
async def get_answer(q: Query ): | |
text = q.text | |
code= q.code | |
host= q.host | |
N = 20 | |
res = ''.join(random.choices(string.ascii_uppercase + | |
string.digits, k=N)) | |
res= res+ str(time.time()) | |
filename= res | |
t = threading.Thread(target=do_ML, args=(filename,text,code,host)) | |
t.start() | |
return JSONResponse({"id": filename}) | |
return "hello" | |
async def get_answer(q: Query2 ): | |
text = q.text | |
code= q.code | |
filename= q.filename | |
host= q.host | |
t = threading.Thread(target=do_ML, args=(filename,text,code,host)) | |
t.start() | |
return JSONResponse({"id": filename}) | |
import requests | |
import io | |
import torch | |
import io | |
from PIL import Image | |
import json | |
client = InferenceClient() | |
# client = InferenceClient(model="SG161222/Realistic_Vision_V1.4") | |
def do_ML(filename:str,text:str,code:str,host:str): | |
try: | |
global client | |
imagei = client.text_to_image(text) | |
byte_array = io.BytesIO() | |
imagei.save(byte_array, format='JPEG') | |
image_bytes = byte_array.getvalue() | |
files = {'file': image_bytes} | |
global audio_space | |
url = audio_space+code | |
data = {"filename": filename} | |
response = requests.post(url, files=files,data= data) | |
print(response.text) | |
if response.status_code == 200: | |
print("File uploaded successfully.") | |
# Handle the response as needed | |
else: | |
print("File upload failed.") | |
except: | |
data={"text":text,"filename":filename} | |
requests.post(host+"texttoimage2handleerror",data=data) | |