File size: 4,439 Bytes
b2e12f6
 
 
 
 
 
 
 
 
 
 
 
b9ef410
b2e12f6
 
 
 
 
 
 
 
 
5f80d43
 
 
 
 
 
 
b2e12f6
b9ef410
 
 
 
 
 
b2e12f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9ef410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e12f6
 
 
 
 
5f80d43
b2e12f6
 
 
 
 
 
 
 
 
 
 
 
5f80d43
b2e12f6
 
 
 
 
 
 
5f80d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e12f6
 
 
 
 
 
 
b9ef410
a674958
b2e12f6
 
5f80d43
 
 
b2e12f6
5f80d43
b2e12f6
5f80d43
 
 
b2e12f6
 
5f80d43
b2e12f6
5f80d43
 
b2e12f6
5f80d43
 
b2e12f6
5f80d43
b2e12f6
5f80d43
 
b2e12f6
5f80d43
 
b2e12f6
5f80d43
 
 
 
b2e12f6
 
b9ef410
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import io
from fastapi import FastAPI, File, UploadFile
import subprocess
import os
import requests
import random
from datetime import datetime
from datetime import date
import json
from pydantic import BaseModel
from typing import Annotated
import random
from fastapi import FastAPI, Response
import string
import time
from huggingface_hub import InferenceClient

from fastapi import Form

class Query(BaseModel):
    text: str
    code:str
    host:str
    
class Query2(BaseModel):
    text: str
    code:str
    filename:str
    host:str
   
class QueryM(BaseModel):
    text: str
    tokens:int
    temp:float
    topp:float
    topk:float



from fastapi import FastAPI, Request, Depends, UploadFile, File
from fastapi.exceptions import HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse


app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=['*'],
    allow_credentials=True,
    allow_methods=['*'],
    allow_headers=['*'],
)


# cred = credentials.Certificate('key.json')
# app1 = firebase_admin.initialize_app(cred)
# db = firestore.client()
# data_frame = pd.read_csv('data.csv')



@app.on_event("startup")
async def startup_event():
    print("on startup")
    # requests.get("https://audiospace-1-u9912847.deta.app/sendcode")

audio_space="https://audiospace-1-u9912847.deta.app/uphoto"

import threading
from huggingface_hub.inference_api import InferenceApi
client = InferenceClient()


@app.post("/image")
async def get_answer(q: Query ):
    text = q.text
    try:
        global client
        imagei = client.text_to_image(text)
        byte_array = io.BytesIO()
        imagei.save(byte_array, format='JPEG')
        response = Response(content=byte_array.getvalue(), media_type="image/png")
        return response
    
    except:
        return JSONResponse({"status":False})
    
    
@app.post("/mistral")
async def get_answer(q: QueryM ):
    text = q.text
    try:
        client = InferenceClient()
        generate_kwargs = dict(
        max_new_tokens= int(q.tokens),
        do_sample=True,
        top_p= q.topp,
        top_k=int(q.topk),
        temperature=q.temp,
        )
        inputs= text
        response = client.post(json={"inputs": inputs, "parameters": generate_kwargs}, model="mistralai/Mistral-7B-Instruct-v0.1")
        json_string = response.decode('utf-8')
        list_of_dicts = json.loads(json_string)
        result_dict = list_of_dicts[0]
        x=(result_dict['generated_text'])
        x=x.replace(inputs,'')
        return JSONResponse({"result":x,"status":True})    
    except Exception as e:
        print(e)
        return JSONResponse({"status":False})
    
    













''' to be removed when main code is updated '''

@app.post("/")
async def get_answer(q: Query ):

    text = q.text
    code= q.code
    host= q.host
    
    
    N = 20
    res = ''.join(random.choices(string.ascii_uppercase +
                             string.digits, k=N))



    res= res+ str(time.time())

    filename= res

    t = threading.Thread(target=do_ML, args=(filename,text,code,host))  
    t.start()

    return JSONResponse({"id": filename})

    return "hello"




@app.post("/error")
async def get_answer(q: Query2 ):

    text = q.text
    code= q.code
    filename= q.filename
    host= q.host


    t = threading.Thread(target=do_ML, args=(filename,text,code,host))  
    t.start()

    return JSONResponse({"id": filename})




import requests
import io
import io
from PIL import Image
import json



# client = InferenceClient(model="SG161222/Realistic_Vision_V1.4")

    
def do_ML(filename:str,text:str,code:str,host:str):
    try:
        global client

        imagei = client.text_to_image(text)

        byte_array = io.BytesIO()
        imagei.save(byte_array, format='JPEG')
        image_bytes = byte_array.getvalue()

    
        files = {'file': image_bytes}

        global audio_space
        url = audio_space+code

        data = {"filename": filename}
        response = requests.post(url, files=files,data= data)

        print(response.text)

        if response.status_code == 200:
            print("File uploaded successfully.")
    # Handle the response as needed
        else:
            print("File upload failed.")

    except:
        data={"text":text,"filename":filename}
        requests.post(host+"texttoimage2handleerror",data=data)