import gradio as gr import tensorflow as tf import tensorflow_hub as hub from PIL import Image import utils _RESOLUTION = 224 _MODEL_URL = "https://tfhub.dev/sayakpaul/deit_tiny_patch16_224/1" def get_model() -> tf.keras.Model: """Initiates a tf.keras.Model from TF-Hub.""" inputs = tf.keras.Input((_RESOLUTION, _RESOLUTION, 3)) hub_module = hub.KerasLayer(_MODEL_URL) logits, attention_scores_dict = hub_module( inputs ) # Second output in the tuple is a dictionary containing attention scores. return tf.keras.Model(inputs, [logits, attention_scores_dict]) _MODEL = get_model() def show_rollout(image): """Function to be called when user hits submit on the UI.""" _, preprocessed_image = utils.preprocess_image( image, "deit_tiny_patch16_224" ) _, attention_scores_dict = _MODEL.predict(preprocessed_image) result = utils.attention_rollout_map( image, attention_scores_dict, "deit_tiny_patch16_224" ) return Image.fromarray(result) title = "Generate Attention Rollout Plots" article = "Attention Rollout was proposed by [Abnar et al.](https://arxiv.org/abs/2005.00928) to quantify the information that flows through self-attention layers. In the original ViT paper ([Dosovitskiy et al.](https://arxiv.org/abs/2010.11929)), the authors use it to investigate the representations learned by ViTs. The model used in the backend is `deit_tiny_patch16_224`. For more details about it, refer [here](https://tfhub.dev/sayakpaul/collections/deit/1). DeiT was proposed by [Touvron et al.](https://arxiv.org/abs/2012.12877)" iface = gr.Interface( show_rollout, inputs=gr.inputs.Image(type="pil", label="Input Image"), outputs="image", title=title, article=article, allow_flagging="never", # examples=[["./car.jpeg", "./bulbul.jpeg"]], ) iface.launch()