from huggingface_hub.keras_mixin import from_pretrained_keras import gradio as gr import tensorflow as tf from PIL import Image import utils _RESOLUTION = 224 def get_model() -> tf.keras.Model: """Initiates a tf.keras.Model from HF Hub.""" inputs = tf.keras.Input((_RESOLUTION, _RESOLUTION, 3)) hub_module = from_pretrained_keras("probing-vits/cait_xxs24_224_classification") logits, sa_atn_score_dict, ca_atn_score_dict = hub_module(inputs, training=False) return tf.keras.Model( inputs, [logits, sa_atn_score_dict, ca_atn_score_dict] ) _MODEL = get_model() def plot(attentions: np.ndarray): """Plots the attention maps from individual attention heads.""" fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(13, 13)) img_count = 0 for i in range(attentions.shape[-1]): if img_count < attentions.shape[-1]: axes[i].imshow(attentions[:, :, img_count]) axes[i].title.set_text(f"Attention head: {img_count}") axes[i].axis("off") img_count += 1 fig.tight_layout() return fig def show_plot(image): """Function to be called when user hits submit on the UI.""" _, preprocessed_image = utils.preprocess_image( image, _RESOLUTION ) _, _, ca_atn_score_dict = _MODEL.predict(preprocessed_image) result_first_block = utils.get_cls_attention_map( preprocessed_image, ca_atn_score_dict, block_key="ca_ffn_block_0_att" ) result_second_block = utils.get_cls_attention_map( preprocessed_image, ca_atn_score_dict, block_key="ca_ffn_block_1_att" ) return plot(result_first_block), plot(result_second_block) title = "Generate Class Attention Plots" article = "Class attention maps as investigated in [Going deeper with Image Transformers](https://arxiv.org/abs/2103.17239) (Touvron et al.)." iface = gr.Interface( show_plot, inputs=gr.inputs.Image(type="pil", label="Input Image"), outputs="plot", title=title, article=article, allow_flagging="never", examples=[["./butterfly.jpg"]], ) iface.launch()