Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from huggingface_hub.keras_mixin import from_pretrained_keras
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
import utils
|
9 |
+
|
10 |
+
_RESOLUTION = 224
|
11 |
+
|
12 |
+
|
13 |
+
def get_model() -> tf.keras.Model:
|
14 |
+
"""Initiates a tf.keras.Model from HF Hub."""
|
15 |
+
inputs = tf.keras.Input((_RESOLUTION, _RESOLUTION, 3))
|
16 |
+
hub_module = from_pretrained_keras(
|
17 |
+
"probing-vits/cait_xxs24_224_classification"
|
18 |
+
)
|
19 |
+
|
20 |
+
logits, sa_atn_score_dict, ca_atn_score_dict = hub_module(
|
21 |
+
inputs, training=False
|
22 |
+
)
|
23 |
+
|
24 |
+
return tf.keras.Model(
|
25 |
+
inputs, [logits, sa_atn_score_dict, ca_atn_score_dict]
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
_MODEL = get_model()
|
30 |
+
|
31 |
+
|
32 |
+
def show_plot(image):
|
33 |
+
"""Function to be called when user hits submit on the UI."""
|
34 |
+
original_image, preprocessed_image = utils.preprocess_image(
|
35 |
+
image, _RESOLUTION
|
36 |
+
)
|
37 |
+
_, _, ca_atn_score_dict = _MODEL.predict(preprocessed_image)
|
38 |
+
|
39 |
+
# Compute the saliency map and superimpose.
|
40 |
+
result_first_block = utils.get_cls_attention_map(
|
41 |
+
image, ca_atn_score_dict, block_key="ca_ffn_block_0_att"
|
42 |
+
)
|
43 |
+
heatmap = cv2.applyColorMap(
|
44 |
+
np.uint8(255 * result_first_block), cv2.COLORMAP_CIVIDIS
|
45 |
+
)
|
46 |
+
heatmap = np.float32(heatmap) / 255
|
47 |
+
|
48 |
+
original_image = original_image / 255.0
|
49 |
+
saliency_map = heatmap + original_image
|
50 |
+
saliency_map = saliency_map / np.max(saliency_map)
|
51 |
+
return Image.fromarray(saliency_map)
|
52 |
+
|
53 |
+
|
54 |
+
title = "Generate Class Saliency Plots"
|
55 |
+
article = "Class saliency maps as investigated in [Going deeper with Image Transformers](https://arxiv.org/abs/2103.17239) (Touvron et al.)."
|
56 |
+
|
57 |
+
iface = gr.Interface(
|
58 |
+
show_plot,
|
59 |
+
inputs=gr.inputs.Image(type="pil", label="Input Image"),
|
60 |
+
outputs="image",
|
61 |
+
title=title,
|
62 |
+
article=article,
|
63 |
+
allow_flagging="never",
|
64 |
+
examples=[["./butterfly.jpg"]],
|
65 |
+
)
|
66 |
+
iface.launch()
|