nenene
commited on
Commit
·
a34f623
1
Parent(s):
554790e
change to cpu
Browse files
app.py
CHANGED
@@ -2,14 +2,12 @@ import gradio as gr
|
|
2 |
from diffusers import DiffusionPipeline
|
3 |
import torch
|
4 |
from PIL import Image, ImageOps
|
5 |
-
import requests
|
6 |
-
from io import BytesIO
|
7 |
from transparent_background import Remover
|
8 |
|
9 |
# Initialize the Diffusion Pipeline
|
10 |
model_id = "yahoo-inc/photo-background-generation"
|
11 |
pipeline = DiffusionPipeline.from_pretrained(model_id, custom_pipeline=model_id)
|
12 |
-
pipeline = pipeline.to('cpu')
|
13 |
|
14 |
def resize_with_padding(img, expected_size):
|
15 |
img.thumbnail((expected_size[0], expected_size[1]))
|
@@ -21,7 +19,6 @@ def resize_with_padding(img, expected_size):
|
|
21 |
return ImageOps.expand(img, padding)
|
22 |
|
23 |
def process_image(input_image, prompt):
|
24 |
-
# Resize and process the input image
|
25 |
img = resize_with_padding(input_image, (512, 512))
|
26 |
|
27 |
# Load background detection model
|
@@ -33,10 +30,10 @@ def process_image(input_image, prompt):
|
|
33 |
seed = 13
|
34 |
mask = ImageOps.invert(fg_mask)
|
35 |
img = resize_with_padding(img, (512, 512))
|
36 |
-
generator = torch.Generator(device='
|
37 |
cond_scale = 1.0
|
38 |
|
39 |
-
with torch.
|
40 |
controlnet_image = pipeline(
|
41 |
prompt=prompt,
|
42 |
image=img,
|
@@ -55,10 +52,10 @@ def process_image(input_image, prompt):
|
|
55 |
iface = gr.Interface(
|
56 |
fn=process_image,
|
57 |
inputs=[
|
58 |
-
gr.
|
59 |
-
gr.
|
60 |
],
|
61 |
-
outputs=gr.
|
62 |
title="Image Processing with Diffusion Pipeline",
|
63 |
description="Upload an image and enter a prompt to generate a new image using the diffusion model."
|
64 |
)
|
|
|
2 |
from diffusers import DiffusionPipeline
|
3 |
import torch
|
4 |
from PIL import Image, ImageOps
|
|
|
|
|
5 |
from transparent_background import Remover
|
6 |
|
7 |
# Initialize the Diffusion Pipeline
|
8 |
model_id = "yahoo-inc/photo-background-generation"
|
9 |
pipeline = DiffusionPipeline.from_pretrained(model_id, custom_pipeline=model_id)
|
10 |
+
pipeline = pipeline.to('cpu') # Use CPU instead of CUDA
|
11 |
|
12 |
def resize_with_padding(img, expected_size):
|
13 |
img.thumbnail((expected_size[0], expected_size[1]))
|
|
|
19 |
return ImageOps.expand(img, padding)
|
20 |
|
21 |
def process_image(input_image, prompt):
|
|
|
22 |
img = resize_with_padding(input_image, (512, 512))
|
23 |
|
24 |
# Load background detection model
|
|
|
30 |
seed = 13
|
31 |
mask = ImageOps.invert(fg_mask)
|
32 |
img = resize_with_padding(img, (512, 512))
|
33 |
+
generator = torch.Generator(device='cpu').manual_seed(seed) # Use CPU generator
|
34 |
cond_scale = 1.0
|
35 |
|
36 |
+
with torch.no_grad(): # Disable gradient calculations for inference
|
37 |
controlnet_image = pipeline(
|
38 |
prompt=prompt,
|
39 |
image=img,
|
|
|
52 |
iface = gr.Interface(
|
53 |
fn=process_image,
|
54 |
inputs=[
|
55 |
+
gr.Image(type="pil", label="Upload Image"),
|
56 |
+
gr.Textbox(label="Enter Prompt")
|
57 |
],
|
58 |
+
outputs=gr.Image(label="Generated Image"),
|
59 |
title="Image Processing with Diffusion Pipeline",
|
60 |
description="Upload an image and enter a prompt to generate a new image using the diffusion model."
|
61 |
)
|