Spaces:
Paused
Paused
File size: 5,903 Bytes
0f3978b 501d9eb 0f3978b 72c8409 501d9eb 0f3978b 5683ad2 0f3978b 5bb086c 6dbc9d1 501d9eb 0f3978b 501d9eb 0f3978b 501d9eb 0f3978b 501d9eb 0f3978b 5683ad2 0f3978b 451edb2 0f3978b 6dbc9d1 0f3978b 9dc331c 0f3978b 9d23916 0f3978b d4afe7e 0f3978b 9dc331c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from PIL import Image
from io import BytesIO
class Prodia:
def __init__(self, api_key, base=None):
self.base = base or "https://api.prodia.com/v2"
self.headers = {
"X-Prodia-Key": api_key,
"Authorization": f"Bearer {os.getenv("API_KEY")}"
}
def generate(self, params):
response = self._post(f"{self.base}/sdxl/generate", params)
return response.json()
def get_job(self, job_id):
response = self._get(f"{self.base}/job/{job_id}")
return response.json()
def wait(self, job):
job_result = job
while job_result['status'] not in ['succeeded', 'failed']:
time.sleep(0.25)
job_result = self.get_job(job['job'])
return job_result
def list_models(self):
response = self._get(f"{self.base}/sdxl/models")
return response.json()
def list_samplers(self):
response = self._get(f"{self.base}/sdxl/samplers")
return response.json()
def generate_v2(self, config):
response = self._post("https://inference.prodia.com/v2/job", {"type": "v2.job.sdxl.txt2img", "config": config})
return Image.open(BytesIO(r.content)).convert("RGBA")
def _post(self, url, params):
headers = {
**self.headers,
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(params))
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def _get(self, url):
response = requests.get(url, headers=self.headers)
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def image_to_base64(image_path):
# Open the image with PIL
with Image.open(image_path) as image:
# Convert the image to bytes
buffered = BytesIO()
image.save(buffered, format="PNG") # You can change format to PNG if needed
# Encode the bytes to base64
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode('utf-8') # Convert bytes to string
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
config_without_model_and_sampler = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"steps": steps,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed
}
if model == "sd_xl_base_1.0.safetensors [be9edd61]":
return prodia_client.generate_v2(config_without_model_and_sampler)
result = prodia_client.generate({
**config_without_model_and_sampler
"model": model,
"sampler": sampler
})
job = prodia_client.wait(result)
return job["imageUrl"]
css = """
#generate {
height: 100%;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(scale=6):
model = gr.Dropdown(interactive=True,value="sd_xl_base_1.0.safetensors [be9edd61]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
with gr.Column(scale=1):
gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI for SDXL V1.0.<br>Powered by [Prodia](https://prodia.com).")
with gr.Tab("txt2img"):
with gr.Row():
with gr.Column(scale=6, min_width=600):
prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
with gr.Column():
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
with gr.Row():
with gr.Column(scale=3):
with gr.Tab("Generation"):
with gr.Row():
with gr.Column(scale=1):
sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
with gr.Column(scale=1):
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
with gr.Row():
with gr.Column(scale=1):
width = gr.Slider(label="Width", minimum=512, maximum=1536, value=1024, step=8)
height = gr.Slider(label="Height", minimum=512, maximum=1536, value=1024, step=8)
gr.Markdown(elem_id="resolution", value="*Resolution Maximum: 1MP (1048576 px)*")
with gr.Column(scale=1):
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
seed = gr.Number(label="Seed", value=-1)
with gr.Column(scale=2):
image_output = gr.Image(value="https://cdn-uploads.huggingface.co/production/uploads/noauth/XWJyh9DhMGXrzyRJk7SfP.png")
text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output)
demo.queue(concurrency_count=24, max_size=32, api_open=False).launch(max_threads=128)
|