File size: 5,980 Bytes
0f3978b
 
 
 
 
 
 
 
 
 
 
 
130c557
0f3978b
d43019a
0f3978b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5683ad2
0f3978b
 
5bb086c
6dbc9d1
 
 
501d9eb
 
d43019a
75c80be
501d9eb
 
d43019a
0f3978b
 
 
 
d43019a
 
 
0f3978b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501d9eb
 
0f3978b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88e3f0d
 
 
501d9eb
 
0f3978b
 
 
 
88e3f0d
 
0f3978b
501d9eb
 
 
 
 
 
1cde335
501d9eb
 
0f3978b
 
 
 
 
 
 
 
 
 
 
 
88e3f0d
 
 
 
 
 
 
 
 
 
 
0f3978b
 
 
 
 
5683ad2
0f3978b
 
 
 
 
 
 
451edb2
 
0f3978b
 
 
 
 
 
 
 
6dbc9d1
0f3978b
 
9dc331c
0f3978b
 
 
88e3f0d
0f3978b
 
 
 
 
 
 
 
 
 
d4afe7e
0f3978b
88e3f0d
0f3978b
c988064
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from PIL import Image
from io import BytesIO

class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }

    def generate(self, params):
        response = self._post(f"{self.base}/sdxl/generate", params)
        return response.json()

    def get_job(self, job_id):
        response = self._get(f"{self.base}/job/{job_id}")
        return response.json()

    def wait(self, job):
        job_result = job

        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.25)
            job_result = self.get_job(job['job'])

        return job_result

    def list_models(self):
        response = self._get(f"{self.base}/sdxl/models")
        return response.json()

    def list_samplers(self):
        response = self._get(f"{self.base}/sdxl/samplers")
        return response.json()


    def generate_v2(self, config):
        response = self._post("https://inference.prodia.com/v2/job", {"type": "v2.job.sdxl.txt2img", "config": config}, v2=True)
        return Image.open(BytesIO(response.content)).convert("RGBA")
        

    def _post(self, url, params, v2=False):
        headers = {
            **self.headers,
            "Content-Type": "application/json"
        }
        if v2:
            headers['Authorization'] = f"Bearer {os.getenv('API_KEY')}"
            
        response = requests.post(url, headers=headers, data=json.dumps(params))

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    def _get(self, url):
        response = requests.get(url, headers=self.headers)

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    


def image_to_base64(image_path):
    # Open the image with PIL
    with Image.open(image_path) as image:
        # Convert the image to bytes
        buffered = BytesIO()
        image.save(buffered, format="PNG")  # You can change format to PNG if needed

        # Encode the bytes to base64
        img_str = base64.b64encode(buffered.getvalue())

    return img_str.decode('utf-8')  # Convert bytes to string



prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))

def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, resolution, seed):

    width, height = resolution.split("x")

    config_without_model_and_sampler = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "width": int(width),
        "height": int(height),
        "seed": seed
    }

    if model == "sd_xl_base_1.0.safetensors [be9edd61]":
        return prodia_client.generate_v2(config_without_model_and_sampler)
    
    result = prodia_client.generate({
        **config_without_model_and_sampler,
        "model": model,
        "sampler": sampler
    })

    job = prodia_client.wait(result)

    return job["imageUrl"]

css = """
#generate {
    height: 100%;
}
"""

list_resolutions = [
    "1024x1024",
    "1152x896",
    "1216x832",
    "1344x768",
    "1536x640",
    "640x1536",
    "768x1344",
    "832x1216"
]

with gr.Blocks(css=css) as demo:


    with gr.Row():
        with gr.Column(scale=6):
            model = gr.Dropdown(interactive=True,value="sd_xl_base_1.0.safetensors [be9edd61]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())

        with gr.Column(scale=1):
            gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI for SDXL V1.0.<br>Powered by [Prodia](https://prodia.com).")

    with gr.Tab("txt2img"):
        with gr.Row():
            with gr.Column(scale=6, min_width=600):
                prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
                negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
            with gr.Column():
                text_button = gr.Button("Generate", variant='primary', elem_id="generate")

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Tab("Generation"):
                    with gr.Row():
                        with gr.Column(scale=1):
                            sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())

                        with gr.Column(scale=1):
                            steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)

                    with gr.Row():
                        with gr.Column(scale=1):
                            resolution = gr.Dropdown(value="1024x1024", show_label=True, label="Resolution", choices=list_resolutions)

                        with gr.Column(scale=1):
                            batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
                            batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)

                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
                    seed = gr.Number(label="Seed", value=-1)


            with gr.Column(scale=2):
                image_output = gr.Image(value="https://cdn-uploads.huggingface.co/production/uploads/noauth/XWJyh9DhMGXrzyRJk7SfP.png")

        text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, resolution, seed], outputs=image_output)

demo.queue(default_concurrency_limit=1, max_size=32, api_open=False).launch(max_threads=128)