profaker's picture
Update app.py
60b6d74 verified
import gradio as gr
from PIL import Image
import diffusers
from diffusers.models import AutoencoderKL
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def predict(prompt, negative_prompt, guidance_scale, num_inference_steps,model, scheduler, lora, lora_weight):
pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", vae=vae).to("cuda")
pipeline.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
if model == "Realistic_V5.1":
pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", vae=vae).to("cuda")
if model == "Realistic_V5.0":
pipeline = diffusers.DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.0_noVAE", vae=vae).to("cuda")
if model == "EpicRealism":
pipeline = diffusers.DiffusionPipeline.from_pretrained("emilianJR/epiCRealism", vae=vae).to("cuda")
pipeline.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
scheduler_class_name = scheduler.split("-")[0]
add_kwargs = {}
if len(scheduler.split("-")) > 1:
add_kwargs["use_karras_sigmas"] = True
if len(scheduler.split("-")) > 2:
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
scheduler = getattr(diffusers, scheduler_class_name)
pipeline.scheduler = scheduler.from_pretrained("emilianJR/epiCRealism", subfolder="scheduler", **add_kwargs)
if lora == "nayanthara":
lora = "profaker/Naya_lora"
if lora == "saipallavi":
lora = "profaker/saipallavi_lora"
if lora == "shobita":
lora = "profaker/Shobita_lora"
if lora == "surya":
lora = "profaker/Surya_lora"
if lora == "vijay":
lora = "profaker/Vijay_lora"
if lora == "None":
images = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=int(num_inference_steps),
guidance_scale=guidance_scale,
clip_skip=1
).images[0]
print("Prompt", prompt)
print("Negative", negative_prompt)
print("Steps", num_inference_steps)
print("Scale", guidance_scale)
print("Scheduler", scheduler)
return images
pipeline.load_lora_weights(lora)
images = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=int(num_inference_steps),
guidance_scale=guidance_scale,
cross_attention_kwargs={"scale": lora_weight}
).images[0]
print("Prompt", prompt)
print("Negative", negative_prompt)
print("Steps", num_inference_steps)
print("Scale", guidance_scale)
print("Scheduler", scheduler)
return images
css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
'''
image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
gr.HTML(read_content("header.html"))
with gr.Row():
with gr.Column():
with gr.Row(elem_id="prompt-container", equal_height=True):
with gr.Row():
prompt = gr.Textbox(placeholder="Your prompt", show_label=False, elem_id="prompt", lines=5)
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(equal_height=True):
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
steps = gr.Number(value=40, minimum=0, maximum=100, step=1, label="steps")
with gr.Row(equal_height=True):
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt",
info="what you don't want to see in the image")
with gr.Row(equal_height=True):
models = ['Realistic_V6.0','Realistic_V5.1','Realistic_V5.0','EpicRealism']
model = gr.Dropdown(label="Models",choices=models,value="Realistic_V6.0")
with gr.Row(equal_height=True):
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler",
"DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras",
"DPMSolverMultistepScheduler-Karras-SDE"]
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers,
value="DPMSolverMultistepScheduler-Karras")
with gr.Row(equal_height=True):
loras = ['None','add_detail','nayanthara','shobita','surya','vijay','saipallavi']
lora = gr.Dropdown(label='Lora', choices=loras, value="None")
lora_weight = gr.Number(value=0.5, minimum=0, maximum=1, step=0.01, label="Lora Weights")
with gr.Row(equal_height=True):
btn = gr.Button("Generate", elem_id="run_button")
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", height=1024, width=512)
btn.click(fn=predict, inputs=[prompt, negative_prompt, guidance_scale, steps, model,scheduler, lora, lora_weight],
outputs=[image_out], api_name='run')
prompt.submit(fn=predict, inputs=[prompt, negative_prompt, guidance_scale, steps, model,scheduler, lora, lora_weight],
outputs=[image_out])
image_blocks.queue(max_size=25, api_open=True).launch(show_api=True)