import gradio as gr import torch from diffusers import AutoPipelineForInpainting, UNet2DConditionModel import diffusers from share_btn import community_icon_html, loading_icon_html pipe = AutoPipelineForInpainting.from_pretrained("SG161222/Realistic_Vision_V5.0_noVAE") def read_content(file_path: str) -> str: """read the content of target file """ with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return content def predict(dict, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"): if negative_prompt == "": negative_prompt = None scheduler_class_name = scheduler.split("-")[0] add_kwargs = {} if len(scheduler.split("-")) > 1: add_kwargs["use_karras"] = True if len(scheduler.split("-")) > 2: add_kwargs["algorithm_type"] = "sde-dpmsolver++" scheduler = getattr(diffusers, scheduler_class_name) pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs) init_image = dict["image"].convert("RGB").resize((1024, 1024)) mask = dict["mask"].convert("RGB").resize((1024, 1024)) output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength) return output.images[0], gr.update(visible=True) css = ''' .gradio-container{max-width: 1100px !important} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;} div#share-btn-container > div {flex-direction: row;background: black;align-items: center} #share-btn-container:hover {background-color: #060606} #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;} #share-btn * {all: unset} #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;} #share-btn-container .wrap {display: none !important} #share-btn-container.hidden {display: none!important} #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} #run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px; border-top-left-radius: 0px;} #prompt-container{margin-top:-18px;} #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} #image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px} ''' share_js = """async () => { async function uploadFile(file){ const UPLOAD_URL = 'https://huggingface.co/uploads'; const response = await fetch(UPLOAD_URL, { method: 'POST', headers: { 'Content-Type': file.type, 'X-Requested-With': 'XMLHttpRequest', }, body: file, /// <- File inherits from Blob }); const url = await response.text(); return url; } async function getInputImgFile(imgCanvas){ const blob = await new Promise(resolve => imgCanvas.toBlob(resolve)); const imgId = Date.now() % 200; const fileName = `sd-inpainting-${{imgId}}.png`; return new File([blob], fileName, { type: 'image/png' }); } async function getOutoutImgFile(imgEl){ const res = await fetch(imgEl.src); const blob = await res.blob(); const imgId = Date.now() % 200; const fileName = `sd-inpainting-${{imgId}}.png`; return new File([blob], fileName, { type: 'image/png' }); } const gradioEl = document.querySelector('body > gradio-app'); // const gradioEl = document.querySelector("gradio-app").shadowRoot; const inputImgCanvas = gradioEl.querySelector('canvas[key="drawing"]'); const outputImgEl = gradioEl.querySelector('#output-img img'); const promptTxt = gradioEl.querySelector('#prompt textarea').value; let titleTxt = promptTxt; if(titleTxt.length > 100){ titleTxt = titleTxt.slice(0, 100) + ' ...'; } const shareBtnEl = gradioEl.querySelector('#share-btn'); const shareIconEl = gradioEl.querySelector('#share-btn-share-icon'); const loadingIconEl = gradioEl.querySelector('#share-btn-loading-icon'); if(!outputImgEl){ return; }; shareBtnEl.style.pointerEvents = 'none'; shareIconEl.style.display = 'none'; loadingIconEl.style.removeProperty('display'); const inputImgFile = await getInputImgFile(inputImgCanvas); const outputImgFile = await getOutoutImgFile(outputImgEl); const files = [inputImgFile, outputImgFile]; const urls = await Promise.all(files.map((f) => uploadFile(f))); const htmlImgs = urls.map(url => ``); const [inputImgUrl, outputImgUrl] = htmlImgs; const descriptionMd = `