project-baize's picture
Update app_modules/utils.py
38028f5
raw
history blame
11.9 kB
# -*- coding:utf-8 -*-
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
import logging
import json
import os
import datetime
import hashlib
import csv
import requests
import re
import html
import markdown2
import torch
import sys
from pygments.lexers import guess_lexer, ClassNotFound
import gradio as gr
from pypinyin import lazy_pinyin
import tiktoken
import mdtex2html
from markdown import markdown
from pygments import highlight
from pygments.lexers import guess_lexer,get_lexer_by_name
from pygments.formatters import HtmlFormatter
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from app_modules.presets import *
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
)
def markdown_to_html_with_syntax_highlight(md_str):
def replacer(match):
lang = match.group(1) or "text"
code = match.group(2)
lang = lang.strip()
#print(1,lang)
if lang=="text":
lexer = guess_lexer(code)
lang = lexer.name
#print(2,lang)
try:
lexer = get_lexer_by_name(lang, stripall=True)
except ValueError:
lexer = get_lexer_by_name("python", stripall=True)
formatter = HtmlFormatter()
#print(3,lexer.name)
highlighted_code = highlight(code, lexer, formatter)
return f'<pre><code class="{lang}">{highlighted_code}</code></pre>'
code_block_pattern = r"```(\w+)?\n([\s\S]+?)\n```"
md_str = re.sub(code_block_pattern, replacer, md_str, flags=re.MULTILINE)
html_str = markdown(md_str)
return html_str
def normalize_markdown(md_text: str) -> str:
lines = md_text.split("\n")
normalized_lines = []
inside_list = False
for i, line in enumerate(lines):
if re.match(r"^(\d+\.|-|\*|\+)\s", line.strip()):
if not inside_list and i > 0 and lines[i - 1].strip() != "":
normalized_lines.append("")
inside_list = True
normalized_lines.append(line)
elif inside_list and line.strip() == "":
if i < len(lines) - 1 and not re.match(
r"^(\d+\.|-|\*|\+)\s", lines[i + 1].strip()
):
normalized_lines.append(line)
continue
else:
inside_list = False
normalized_lines.append(line)
return "\n".join(normalized_lines)
def convert_mdtext(md_text):
code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL)
inline_code_pattern = re.compile(r"`(.*?)`", re.DOTALL)
code_blocks = code_block_pattern.findall(md_text)
non_code_parts = code_block_pattern.split(md_text)[::2]
result = []
for non_code, code in zip(non_code_parts, code_blocks + [""]):
if non_code.strip():
non_code = normalize_markdown(non_code)
if inline_code_pattern.search(non_code):
result.append(markdown(non_code, extensions=["tables"]))
else:
result.append(mdtex2html.convert(non_code, extensions=["tables"]))
if code.strip():
# _, code = detect_language(code) # 暂时去除代码高亮功能,因为在大段代码的情况下会出现问题
# code = code.replace("\n\n", "\n") # 暂时去除代码中的空行,因为在大段代码的情况下会出现问题
code = f"\n```{code}\n\n```"
code = markdown_to_html_with_syntax_highlight(code)
result.append(code)
result = "".join(result)
result += ALREADY_CONVERTED_MARK
return result
def convert_asis(userinput):
return f"<p style=\"white-space:pre-wrap;\">{html.escape(userinput)}</p>"+ALREADY_CONVERTED_MARK
def detect_converted_mark(userinput):
if userinput.endswith(ALREADY_CONVERTED_MARK):
return True
else:
return False
def detect_language(code):
if code.startswith("\n"):
first_line = ""
else:
first_line = code.strip().split("\n", 1)[0]
language = first_line.lower() if first_line else ""
code_without_language = code[len(first_line) :].lstrip() if first_line else code
return language, code_without_language
def convert_to_markdown(text):
text = text.replace("$","&#36;")
def replace_leading_tabs_and_spaces(line):
new_line = []
for char in line:
if char == "\t":
new_line.append("&#9;")
elif char == " ":
new_line.append("&nbsp;")
else:
break
return "".join(new_line) + line[len(new_line):]
markdown_text = ""
lines = text.split("\n")
in_code_block = False
for line in lines:
if in_code_block is False and line.startswith("```"):
in_code_block = True
markdown_text += "```\n"
elif in_code_block is True and line.startswith("```"):
in_code_block = False
markdown_text += "```\n"
elif in_code_block:
markdown_text += f"{line}\n"
else:
line = replace_leading_tabs_and_spaces(line)
line = re.sub(r"^(#)", r"\\\1", line)
markdown_text += f"{line} \n"
return markdown_text
def add_language_tag(text):
def detect_language(code_block):
try:
lexer = guess_lexer(code_block)
return lexer.name.lower()
except ClassNotFound:
return ""
code_block_pattern = re.compile(r"(```)(\w*\n[^`]+```)", re.MULTILINE)
def replacement(match):
code_block = match.group(2)
if match.group(2).startswith("\n"):
language = detect_language(code_block)
if language:
return f"```{language}{code_block}```"
else:
return f"```\n{code_block}```"
else:
return match.group(1) + code_block + "```"
text2 = code_block_pattern.sub(replacement, text)
return text2
def delete_last_conversation(chatbot, history):
if len(chatbot) > 0:
chatbot.pop()
if len(history) > 0:
history.pop()
return (
chatbot,
history,
"Delete Done",
)
def reset_state():
return [], [], "Reset Done"
def reset_textbox():
return gr.update(value=""),""
def cancel_outputing():
shared_state.interrupt()
textbox = reset_textbox()
return "Stop Done"
def transfer_input(inputs):
# 一次性返回,降低延迟
textbox = reset_textbox()
return (
inputs,
gr.update(value=""),
gr.Button.update(visible=True),
gr.Button.update(visible=True),
)
class State:
interrupted = False
def interrupt(self):
self.interrupted = True
def recover(self):
self.interrupted = False
shared_state = State()
# Greedy Search
def greedy_search(input_ids: torch.Tensor,
model: torch.nn.Module,
tokenizer: transformers.PreTrainedTokenizer,
stop_words: list,
max_length: int,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = 25) -> Iterator[str]:
generated_tokens = []
past_key_values = None
current_length = 1
for i in range(max_length):
with torch.no_grad():
if past_key_values is None:
outputs = model(input_ids)
else:
outputs = model(input_ids[:, -1:], past_key_values=past_key_values)
logits = outputs.logits[:, -1, :]
past_key_values = outputs.past_key_values
# apply temperature
logits /= temperature
probs = torch.softmax(logits, dim=-1)
# apply top_p
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > top_p
probs_sort[mask] = 0.0
# apply top_k
#if top_k is not None:
# probs_sort1, _ = torch.topk(probs_sort, top_k)
# min_top_probs_sort = torch.min(probs_sort1, dim=-1, keepdim=True).values
# probs_sort = torch.where(probs_sort < min_top_probs_sort, torch.full_like(probs_sort, float(0.0)), probs_sort)
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
input_ids = torch.cat((input_ids, next_token), dim=-1)
generated_tokens.append(next_token[0].item())
text = tokenizer.decode(generated_tokens)
yield text
if any([x in text for x in stop_words]):
return
def generate_prompt_with_history(text,history,tokenizer,max_length=2048):
prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!"
history = ["\n[|Human|]{}\n[|AI|]{}".format(x[0],x[1]) for x in history]
history.append("\n[|Human|]{}\n[|AI|]".format(text))
history_text = ""
for x in history[::-1]:
if tokenizer(prompt+history_text+x, return_tensors="pt")['input_ids'].size(-1) <= max_length:
history_text = x + history_text
flag = True
if flag:
return prompt+history_text,tokenizer(prompt+history_text, return_tensors="pt")
else:
return False
def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
for stop_word in stop_words:
if s.endswith(stop_word):
return True
for i in range(1, len(stop_word)):
if s.endswith(stop_word[:i]):
return True
return False
def load_tokenizer_and_model(base_model,adapter_model,load_8bit=False):
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
tokenizer = LlamaTokenizer.from_pretrained(base_model)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
adapter_model,
torch_dtype=torch.float16,
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
adapter_model,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
adapter_model,
device_map={"": device},
)
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
return tokenizer,model,device