import gradio as gr # Import tensorflow here import tensorflow as tf from tensorflow.keras.utils import img_to_array,load_img from tensorflow.keras.models import load_model # Use tensorflow.keras.models import numpy as np # Load the pre-trained model from the local path model_path = 'Mango.h5' # Define custom objects to handle potential incompatibilities custom_objects = {'DepthwiseConv2D': tf.keras.layers.DepthwiseConv2D} # Load the model with custom_objects model = load_model(model_path, custom_objects=custom_objects) # Load the model here def predict_disease(image_file, model, all_labels): try: # Load and preprocess the image img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils img_array = img_to_array(img) img_array = np.expand_dims(img_array, axis=0) # Add batch dimension img_array = img_array / 255.0 # Normalize the image # Predict the class predictions = model.predict(img_array) # Use the loaded model here predicted_class = np.argmax(predictions[0]) # Get the predicted class label predicted_label = all_labels[predicted_class] # Print the predicted label to the console if predicted_label=='Mango Anthracrose': predicted_label = """

Mango Anthracrose

PESTICIDES TO BE USED:


* * * IMPORTANT NOTE * * *

Be sure to follow local regulations and guidelines for application

""" elif predicted_label=='Mango Bacterial Canker': predicted_label = """

Mango Bacterial Canker

PESTICIDES TO BE USED:

* * * IMPORTANT NOTE * * *

Be sure to follow local regulations and guidelines for application

""" elif predicted_label=='Mango Cutting Weevil': predicted_label = """

Mango Cutting Weevil

PESTICIDES TO BE USED:

* * * IMPORTANT NOTE * * *

Be sure to follow local regulations and guidelines for application

""" elif predicted_label=='Mango Die Back': predicted_label = """

Mango Die Back

PESTICIDES TO BE USED:

* * * IMPORTANT NOTE * * *

Be sure to follow local regulations and guidelines for application

""" elif predicted_label=='Mango Gall Midge': predicted_label = """

Mango Gall Midge

PESTICIDES TO BE USED:

* * * IMPORTANT NOTE * * *

Be sure to follow local regulations and guidelines for application

""" elif predicted_label=='Mango Powdery Mildew': predicted_label = """

Mango Powdery Mildew

PESTICIDES TO BE USED:

* * * IMPORTANT NOTE * * *

Be sure to follow local regulations and guidelines for application

""" elif predicted_label=='Mango Sooty Mould': predicted_label = """

Mango Sooty Mould

PESTICIDES TO BE USED:

* * * IMPORTANT NOTE * * *

Be sure to follow local regulations and guidelines for application

""" else: predicted_label = """

Mango Healthy



No need use Pesticides
""" return predicted_label except Exception as e: print(f"Error: {e}") return None # List of class labels all_labels = [ 'Mango Anthracrose', 'Mango Bacterial Canker', 'Mango Cutting Weevil', 'Mango Die Back', 'Mango Gall Midge', 'Mango Healthy', 'Mango Powdery Mildew', 'Mango Sooty Mould' ] # Define the Gradio interface def gradio_predict(image_file): return predict_disease(image_file, model, all_labels) # Pass the model to the function # Create a Gradio interface gr_interface = gr.Interface( fn=gradio_predict, # Function to call for predictions inputs=gr.Image(type="filepath"), # Upload image as file path outputs="html", # Output will be the class label as text title="Mango Disease Predictor", description="Upload an image of a plant to predict the disease.", ) # Launch the Gradio app gr_interface.launch(share=True)